• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 531
  • 356
  • 112
  • 69
  • 32
  • 18
  • 11
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1380
  • 224
  • 209
  • 204
  • 189
  • 140
  • 139
  • 116
  • 108
  • 97
  • 92
  • 87
  • 84
  • 79
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

[en] DIGITAL TECNOLOGIES AND TEACHING PRACTICE: APPROPRIATON CONTEXTS AND POSSIBLE TRAJECTORIES / [pt] TECNOLOGIAS DIGITAIS E PRÁTICA DOCENTE: CONTEXTOS DE APROPRIAÇÃO E TRAJETÓRIAS POSSÍVEIS

GUSTAVO TARANTO MALHEIROS 05 December 2017 (has links)
[pt] Este trabalho buscou identificar a trajetória percorrida por professores universitários que se apropriaram de tecnologias digitais em suas práticas docentes, tendo por recorte de análise um grupo de professores de universidades públicas do Estado do Rio de Janeiro. Inicialmente apresenta-se uma revisão do conceito de apropriação e como este conceito se tangibiliza quando seu objeto são as tecnologias digitais. Em seguida, foi elaborada uma matriz de identificação no intuito de reconhecer, dentre os professores destas universidades, aqueles que se apropriaram de tecnologias digitais no contexto educativo; para tal, foram consideradas as aulas conduzidas na plataforma digital do Consórcio Cederj, partindo da premissa de que as aulas na modalidade de Educação a Distância on-line são mais propensas à integração da educação com estas tecnologias. Com estes professores identificados, realizou-se uma pesquisa qualitativa, com entrevistas presenciais como instrumentos de coleta/produção de dados e análise de conteúdo para identificar suas trajetórias. Por fim, apresentaram-se relatos destes professores e concluiu-se que as trajetórias não são contínuas, mas feitas de marcos, que apontam para a evolução e a aprendizagem na relação com as tecnologias, a superação dos obstáculos existentes neste processo de apropriação e a inefabilidade, situação na qual o objeto está de tal forma apropriado, que se torna impossível descrever os caminhos desta apropriação. / [en] This work aims at identifying the trajectory of university professors who managed to integrate digital technologies in their teaching practice. To this end, we selected as a sample a group of professors from public universities in the State of Rio de Janeiro. Initially, we present a revision of the literature on the appropriation concept, in addition to an explanation on how this concept applies to the digital technologies. Subsequently, we elaborate a matrix to identify the professors, within the selected corpus, who could appropriate digital technologies in their educational practices. With this purpose, we consider the classes conducted in the Cederj Consortium online platform, based on the premise that distance education classes are more likely to use digital technologies. After identifying these professors, we propose a qualitative research, using the instrument of face-to-face semistructured interviews to collect the data, followed by a content analysis aiming to find out about their trajectories. We conclude that the professors trajectories were not continuous, but had specific landmarks, which way about an evolution of the learning process in relationship to technologies, the need to overcome obstacles in the appropriation process; and the ineffability. The latter being a situation in which the object is appropriated in a way that it becomes impossible to describe the process.
622

Navigation and Control of an Autonomous Vehicle

Schworer, Ian Josef 19 May 2005 (has links)
The navigation and control of an autonomous vehicle is a highly complex task. Making a vehicle intelligent and able to operate "unmanned" requires extensive theoretical as well as practical knowledge. An autonomous vehicle must be able to make decisions and respond to situations completely on its own. Navigation and control serves as the major limitation of the overall performance, accuracy and robustness of an autonomous vehicle. This thesis will address this problem and propose a unique navigation and control scheme for an autonomous lawn mower (ALM). Navigation is a key aspect when designing an autonomous vehicle. An autonomous vehicle must be able to sense its location, navigate its way toward its destination, and avoid obstacles it encounters. Since this thesis attempts to automate the lawn mowing process, it will present a navigational algorithm that covers a bounded region in a systematic way, while avoiding obstacles. This algorithm has many applications including search and rescue, floor cleaning, and lawn mowing. Furthermore, the robustness and utility of this algorithm is demonstrated in a 3D simulation. This thesis will specifically study the dynamics of a two-wheeled differential drive vehicle. Using this dynamic model, various control techniques can then be applied to control the movement of the vehicle. This thesis will consider both open loop and closed loop control schemes. Optimal control, path following, and trajectory tracking are all considered, simulated, and evaluated as practical solutions for control of an ALM. To design and build an autonomous vehicle requires the integration of many sensors, actuators, and controllers. Software serves as the glue to fuse all these devices together. This thesis will suggest various sensors and actuators that could be used to physically implement an ALM. This thesis will also describe the operation of each sensor and actuator, present the software used to control the system, and discuss physical limitations and constraints that might be encountered while building an ALM. / Master of Science
623

Lunar Mission Analysis for a Wallops Flight Facility Launch

Dolan, John Martin 05 November 2008 (has links)
Recently there is an increase in interest in the Moon as a destination for space missions. This increased interest is in the composition and geography of the Moon as well as using the Moon to travel beyond the Earth to other planets in the solar system. This thesis explores the mechanics behind a lunar mission and the costs and benefits of different approaches. To constrain this problem, the launch criteria are those of Wallops Flight Facility (WFF), which has expressed interest in launching small spacecraft to the Moon for exploration and study of the lunar surface. The flight from the Earth to the Moon and subsequent lunar orbits, referred to hereafter as the mission, is broken up into three different phases: first the launch and parking orbit around the Earth, second the transfer orbit, and finally the lunar capture and orbit. A launch from WFF constrains the direction of the launch and the possible initial parking orbits. Recently WFF has been offered the use of a Taurus XL launch vehicle whose specifications will be used for all other limitations of the launch and initial parking orbit. The orbit investigated in this part of the mission is a simple circular orbit with limited disturbances. These disturbances are only a major factor for long duration orbits and don't affect the parking orbit significantly. The transfer orbit from the Earth to the Moon is the most complex and interesting part of the mission. To fully describe the dynamics of the Earth-Moon system a three-body model is used. The model is a restricted three-body problem keeping the Earth and Moon orbiting circularly around the system barycenter. This model allows the spacecraft to experience the influence of the Earth and Moon during the entire transfer orbit, making the simulation more closely related to what will actually happen rather than what a patched conic solution would give. This trajectory is examined using Newtonian, Lagrangian, and Hamiltonian mechanics along with using a rotating and non-rotating frame of reference for the equations of motion. The objective of the transfer orbit is to reduce the time and fuel cost of the mission as well as allow for various insertion angles to the Moon. The final phase of the mission is the lunar orbit and the analysis also uses a simple two body model similar to the parking orbit. The analysis investigates how the orbits around the Moon evolve and decay and explores more than just circular orbits, but orbits with different eccentricities. The non-uniform lunar gravity field is investigated to accurately model the lunar orbit. These factors give a proper simulation of what happens to the craft for the duration of the lunar orbit. Tracking the changes in the orbit gives a description of where it will be and how much of the lunar surface it can observe without any active changes to the orbit. The analysis allows for either pursuing a long duration sustained orbit or a more interesting orbit that covers more of the lunar surface. These three phases are numerically simulated using MATLAB, which is a focus of this thesis. In all parts of the mission the simulations are refined and optimized to reduce the time of the simulation. Also this refinement gives a more accurate portrayal of what would really happen in orbit. This reduction in time is necessary to allow for many different orbits and scenarios to be investigated without using an unreasonable amount of time. / Master of Science
624

Energy management of three-dimensional minimum-time intercept

Visser, Hendrikus January 1985 (has links)
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well-known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. A detailed description of the feedback laws and of some of the mathematical tools used to construct the controller is presented. The construction of the feedback laws requires a substantial preflight computational effort, but the computation times for on-board execution of the feedback laws are very modest. Other issues relating to practical implementation are addressed as well. Numerical examples, comparing open-loop optimal and approximate feedback solutions for a sample high-performance fighter, illustrate the attractiveness of the guidance scheme. Optimal three-dimensional flight in the presence of a terrain limit is studied in some detail. / Ph. D. / incomplete_metadata
625

On simulating and predicting pedestrian trajectories in a crowd

Bisagno, Niccolò 15 April 2020 (has links)
Crowds of people are gathering at multiple venues, such as concerts, political rallies, as well as in commercial malls, or just simply walking on the streets. More and more people are flocking to live in urban areas, thus generating a lot of scenarios of crowds. As a consequence, there is an increasing demand for automatic tools that can analyze and predict the behavior of crowds to ensure safety. Crowd motion analysis is a key feature in surveillance and monitoring applications, providing useful hints about potential threats to safety and security in urban and public spaces. It is well known that people gatherings are generally difficult to model, due to the diversity of the agents composing the crowd. Each individual is unique, being driven not only by the destination but also by personality traits and attitude. The domain of crowd analysis has been widely investigated in the literature. However, crowd gatherings have sometimes resulted in dangerous scenarios in recent years, such as stampedes or during dangerous situations. To take a step toward ensuring the safety of crowds, in this work we investigate two main research problems: we try to predict each person future position and we try to understand which are the key factors for simulating crowds. Predicting in advance how a mass of people will fare in a given space would help in ensuring the safety of public gatherings.
626

Kinematic Motion Planning for a 7-AxisRobotic Arm (LWA70 by Schunk)

Mohammed, Shehab January 2016 (has links)
Redundant manipulators are widely used because they have a greater dexterity andversatility than nonredundant manipulators. In the redundant manipulators, thenumber of degrees of freedom are more than the required to manipulate objects atthe task space, which leads to a possibility to generate infinite number of solutions.For this reasons it has been a hot research topic to exploit the redundancy. Thisthesis work is focus on modeling and controlling redundant robot manipulator withseven degree of freedom (LWA 10 kg payload by Schunk). A literature review hasbeen prepared on the existing methods of exploiting the redundancy in the 7-DOFmanipulators at the velocity and position levels. The forward kinematic equationsare derived using the Denavit-Hartenberg method. The inverse kinematic problem issolved and the redundancy is exploited at the position level to avoid the computationalcomplexity and inaccuracy associated with exploiting the redundancy at the velocitylevel. The joint angles of the manipulator are computed in term of a redundancyparameter defining the self-motion in the manipulator. The relation between the jointangles and the redundancy parameter is exploited to avoid selecting the arm anglesthat violate the joint limits. The singularity configurations and robot workspace arealso studied in this thesis. An example is presented on how the self-motion of thearm appears when the end-effector is stationary. The methods are applied to followstraight line trajectories while preventing the joints to exceed the limits. The resultsfound showed how exploiting the redundancy at the position level is being exact withlow computational cost. The validity of the methods is verified by Robotics Toolboxsimulations.
627

A Toolchain for Optimizing Trajectories under real Weather Conditions and Realistic Flight Performance

Förster, Stanley, Rosenow, Judith, Lindner, Martin, Fricke, Hartmut 15 July 2024 (has links)
Reducing emissions is a very prevailing topic also in aviation industry. Besides technological improvements it is necessary to also adjust procedures and operations. We present a tool that is able to optimize flight trajectories not only regarding economical factors but also ecological ones. Due to the utilization of a flight performance model and a detailed engine model, it is possible to determine an aircraft’s emission quantities during all phases of a flight. Besides those like CO2, NOx, CO, Black Carbon, etc. we are also considering contrail formation and their influence on the global warming. By transforming emissions into monetary values we can find a trade off between multiple criteria. After describing the employed models and software architecture we present some use cases where we successfully applied our toolchain.
628

A Unified, Configurable, Non-Iterative Guidance System For Launch Vehicles

Rajeev, U P 12 1900 (has links)
A satellite launch vehicle not subjected to any perturbations, external or internal, could be guided along a trajectory by following a stored, pre-computed steering program. In practice, perturbations do occur, and in order to take account of them and to achieve an accurate injection, a closed loop guidance system is required. Guidance algorithm is developed by solving the optimal control problem. Closed form solution is difficult because the necessary conditions are in the form of Two Point Boundary Value Problems (TBVP) or Multi Point Boundary Value Problems (MPBVP). Development of non-iterative guidance algorithm is taken as a prime objective of this thesis to ensure reliable on-board implementation. If non-iterative algorithms are required, the usual practice is to approximate the system equations to derive closed form solutions. In the present work, approximations cannot be used because the algorithm has to cater to a wide variety of vehicles and missions. Present development adopts an alternate approach by splitting the reconfigurable algorithm development in to smaller sub-problems such that each sub-problem has closed form solution. The splitting is done in such a way that the solution of the sub-problems can be used as building blocks to construct the final solution. By adding or removing the building blocks, the algorithm can be configured to suit specific requirements. Chapter 1 discusses the motivation and objectives of the thesis and gives a literature survey. In chapter 2, Classical Flat Earth (CFE) guidance algorithm is discussed. The assumptions and the nature of solution are closely analyzed because CFE guidance is used as the baseline for further developments. New contribution in chapter 2 is the extension of CFE guidance for a generalized propulsion system in which liquid and solid engines are present. In chapter 3, CFE guidance is applied for a mission with large pitch steering angles. The result shows loss of optimality and performance. An algorithm based on regular perturbation is developed to compensate for the small angle approximation. The new contribution in chapter 3 is the development of Regular Perturbation based FE (RPFE) guidance as an extension of CFE guidance. RPFE guidance can be configured as CFE guidance and FEGP. Algorithms presented up to chapter 3 are developed to inject a satellite in to orbits with unspecified inertial orientation. Communication satellite missions demand injection in to an orbit with a specific inertial orientation defined by argument of perigee. This problem is formulated using Calculus of Variations in chapter 4. A non-iterative closed form solution (Predicted target Flat Earth or PFE guidance) is derived for this problem. In chapter 5, PFE guidance is extended to a multi-stage vehicle with a constraint on the impact point of spent lower stage. Since the problem is not analytically solvable, the original problem is split in to three sub-problems and solved. Chapter 6 has two parts. First part gives theoretical analysis of the sub-optimal strategies with special emphasis to guidance. Behavior of predicted terminal error and control commands in presence of plant approximations are theoretically analyzed for a class of optimal control problems and the results are presented as six theorems. Chapter 7 presents the conclusions and future works.
629

INTEGRATING CONNECTED VEHICLE DATA FOR OPERATIONAL DECISION MAKING

Rahul Suryakant Sakhare (9320111) 26 April 2023 (has links)
<p>  </p> <p>Advancements in technology have propelled the availability of enriched and more frequent information about traffic conditions as well as the external factors that impact traffic such as weather, emergency response etc. Most newer vehicles are equipped with sensors that transmit their data back to the original equipment manufacturer (OEM) at near real-time fidelity. A growing number of such connected vehicles (CV) and the advent of third-party data collectors from various OEMs have made big data for traffic commercially available for use. Agencies maintaining and managing surface transportation are presented with opportunities to leverage such big data for efficiency gains. The focus of this dissertation is enhancing the use of CV data and applications derived from fusing it with other datasets to extract meaningful information that will aid agencies in data driven efficient decision making to improve network wide mobility and safety performance.   </p> <p>One of the primary concerns of CV data for agencies is data sampling, particularly during low-volume overnight hours. An evaluation of over 3 billion CV records in May 2022 in Indiana has shown an overall CV penetration rate of 6.3% on interstates and 5.3% on non-interstate roadways. Fusion of CV traffic speeds with precipitation intensity from NOAA’s High-Resolution Rapid-Refresh (HRRR) data over 42 unique rainy days has shown reduction in the average traffic speed by approximately 8.4% during conditions classified as very heavy rain compared to no rain. </p> <p>Both aggregate analysis and disaggregate analysis performed during this study enables agencies and automobile manufacturers to effectively answer the often-asked question of what rain intensity it takes to begin impacting traffic speeds. Proactive measures such as providing advance warnings that improve the situational awareness of motorists and enhance roadway safety should be considered during very heavy rain periods, wind events, and low daylight conditions.</p> <p>Scalable methodologies that can be used to systematically analyze hard braking and speed data were also developed. This study demonstrated both quantitatively and qualitatively how CV data provides an opportunity for near real-time assessment of work zone operations using metrics such as congestion, location-based speed profiles and hard braking. The availability of data across different states and ease of scalability makes the methodology implementable on a state or national basis for tracking any highway work zone with little to no infrastructure investment. These techniques can provide a nationwide opportunity in assessing the current guidelines and giving feedback in updating the design procedures to improve the consistency and safety of construction work zones on a national level.  </p> <p>CV data was also used to evaluate the impact of queue warning trucks sending digital alerts. Hard-braking events were found to decrease by approximately 80% when queue warning trucks were used to alert motorists of impending queues analyzed from 370 hours of queueing with queue trucks present and 58 hours of queueing without the queue trucks present, thus improving work zone safety. </p> <p>Emerging opportunities to identify and measure traffic shock waves and their forming or recovery speed anywhere across a roadway network are provided due to the ubiquity of the CV data providers. A methodology for identifying different shock waves was presented, and among the various case studies found typical backward forming shock wave speeds ranged from 1.75 to 11.76 mph whereas the backward recovery shock wave speeds were between 5.78 to 16.54 mph. The significance of this is illustrated with a case study of  a secondary crash that suggested  accelerating the clearance by 9 minutes could have prevented the secondary crash incident occurring at the back of the queue. Such capability of identifying and measuring shock wave speeds can be utilized by various stakeholders for traffic management decision-making that provide a holistic perspective on the importance of both on scene risk as well as the risk at the back of the queue. Near real-time estimation of shock waves using CV data can recommend travel time prediction models and serve as input variables to navigation systems to identify alternate route choice opportunities ahead of a driver’s time of arrival.   </p> <p>The overall contribution of this thesis is developing scalable methodologies and evaluation techniques to extract valuable information from CV data that aids agencies in operational decision making.</p>
630

Low-Energy Lunar Transfers in the Bicircular Restricted Four-body Problem

Stephen Scheuerle Jr. (10676634) 26 April 2024 (has links)
<p dir="ltr"> With NASA's Artemis program and international collaborations focused on building a sustainable infrastructure for human exploration of the Moon, there is a growing demand for lunar exploration and complex spaceflight operations in cislunar space. However, designing efficient transfer trajectories between the Earth and the Moon remains complex and challenging. This investigation focuses on developing a dynamically informed framework for constructing low-energy transfers in the Earth-Moon-Sun Bicircular Restricted Four-body Problem (BCR4BP). Techniques within dynamical systems theory and numerical methods are exploited to construct transfers to various cislunar orbits. The analysis aims to contribute to a deeper understanding of the dynamical structures governing spacecraft motion. It addresses the characteristics of dynamical structures that facilitate the construction of propellant-efficient pathways between the Earth and the Moon, exploring periodic structures and energy properties from the Circular Restricted Three-body Problem (CR3BP) and BCR4BP. The investigation also focuses on constructing families of low-energy transfers by incorporating electric propulsion, i.e., low thrust, in an effort to reduce the time of flight and offer alternative transfer geometries. Additionally, the investigation introduces a process to transition solutions to the higher fidelity ephemeris force model to accurately model spacecraft motion through the Earth-Moon-Sun system. This research provides insights into constructing families of ballistic lunar transfers (BLTs) and cislunar low-energy flight paths (CLEFs), offering a foundation for future mission design and exploration of the Earth-Moon system.</p>

Page generated in 0.03 seconds