• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 20
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 101
  • 101
  • 54
  • 48
  • 30
  • 29
  • 24
  • 24
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Funções de Lyapunov estendidas para análise de estabilidade transitória em sistemas elétricos de potência / Extended Lyapunov function for analysis and control of electrical power systems transient stability

Silva, Flávio Henrique Justiniano Ribeiro da 19 October 2004 (has links)
O método de Lyapunov, também conhecido como método direto, é eficiente para análise de estabilidade transitória em sistemas de potência. Tal método possibilita a análise de estabilidade sem requerer o conhecimento das soluções das equações diferenciais que modelam o problema. A maior desvantagem da utilização dos métodos diretos, é sem dúvida encontrar uma função (V) que satisfaça as condições do Teorema de Lyapunov, ou seja, V > 0 e V \'< ou =\' 0. Durante muitos anos a inclusão das condutâncias de transferência na modelagem do sistema de potência, com a rede reduzida aos nós dos geradores, foi um assunto que despertou interesse em vários pesquisadores. Em 1989, Chiang provou a não existência de uma Função de Lyapunov para sistemas de potência quando as condutâncias de transferência são consideradas. Essas condutâncias de transferência são responsáveis por gerar regiões no espaço de estados onde tem-se V > 0, não satisfazendo as condições do Teorema de Lyapunov. Recentemente, Rodrigues, Alberto e Bretas (2000) apresentaram a Extensão do Princípio de Invariância de LaSalle, onde é permitido que a Função de Lyapunov possua, em algumas regiões limitadas do espaço de estados, a derivada positiva. Neste caso, estas funções passam a ser denominadas Funções de Lyapunov Estendidas (FLE). Neste trabalho, são utilizadas a Extensão do Princípio de Invariância de LaSalle e as Funções de Lyapunov Estendidas para a análise de estabilidade transitória, considerando o efeito das condutâncias de transferência na modelagem do problema. Para isto, são propostas Funções de Lyapunov Estendidas para modelos de sistemas de potência que não apresentam uma Função de Lyapunov no sentido usual. Essas FLE\'s são propostas tanto para sistemas de 1-máquina versus barramento infinito quanto para sistemas multimáquinas. Para a obtenção de boas estimativas do tempo de abertura, nos estudos de estabilidade transitória, é proposto um algoritmo iterativo. Este algoritmo fornece uma boa estimativa local da área de atração do ponto de equilíbrio estável de interesse. / The method of Lyapunov, one of the direct method, is efficient for transient stability analysis of power systems. The direct methods are well-suited for stability analysis of power systems, since they do not require the solution of the set of differential equations of the system model. The great difficulty of the direct methods is to find an auxiliary function (V) which satisfies the conditions of Lyapunov\'s Theorem V > 0 and V \'< or =\' 0. For many years the inclusion of the transfer conductances in the power system model, with the reduced network, is a issue of interest for several researchers. In 1989, Chiang studied the existence of energy functions for power systems with losses and he proved the non existence of a Lyapunov Function for power systems when the transfer conductance is taken into account. The transfer conductances are responsible for generating regions in the state space where the derivative of V is positive. Therefore, the function V is nor a Lyapunov Function, because its derivative is not semi negative definite. Recently, an Extension of the LaSalle\'s Invariance Principle has been proposed by Rodrigues, Alberto and Bretas (2000). This extension relaxes some of the requirements on the auxiliary function which is commonly called Lyapunov Function. In this extension, the derivative of the auxiliary function can be positive in some bounded regions of the state space and, for distinction purposes, it is called, as Extended Lyapunov Function. Inthis work, the Extension of the LaSalle\'s Invariance Principle and the Extended Lyapunov Function are used for the transient stability analysis of power systems with the model taking transfer conductances in consideration. For at purpose in this research, Extended Lyapunov Functions for power system models which do not have Lyapunov Functions in the usual sense are proposed. Extended Lyapunov Functions are proposed for a single-machine-infinite- bus-system and multimachine systems. For obtaining good estimates of the critical clearing time in transient stability analysis, an iterative algorithm is proposed. This algorithm supplies a good local estimate of the attraction area for the post fault stable equilibrium point.
22

Stability Analysis and Economic Dispatch of an Isolated Power System with Wind Generators

Lai, Yu-chieh 07 July 2011 (has links)
The objective of this thesis is to investigate the transient response and optimal economic dispatch of an isolated power system with wind generators. Different types of wind turbines and the classification of Stability are introduced. Then, the process of Transient stability analysis and the concept of Genetic Algorithms are given for explanation. In this thesis, the practical power system of Kinmen is selected for case study. The disturbances introduced by gusting wind and N-1 system contingency are considered in the transient stability analysis. Furthermore, in order to obtain both accuracy and feasibility of the Optimal power dispatch by using Real-parameter Genetic Algorithms, the simulation results should be tested for the restrictions and requirements of the actual operation.
23

Impact Of High-level Distributed Generation Penetration On The Transmission System Transient Stability

Kurt, Burcak 01 October 2009 (has links) (PDF)
This thesis investigates the impact of high-level penetration of distributed generation especially from the renewable energy sources on the transient stability of the transmission system. Distributed generation is a source of electric power connected to the distribution network or on the consumer side. It is expected that distributed generation grows significantly by the increasing environmental concerns and deregulation in the market. As soon as the increasing penetration level, distributed generation starts to influence the distribution system as well as the transmission system. To investigate the impact of distributed generation with different penetration levels on the transmission system transient stability, simulation scenarios are created and simulations are run on the basis of these scenarios by the implementation of the different distributed generation technologies to the &ldquo / New England&rdquo / test system. Stability indicators are observed to assess the impact on the transient stability. Results are presented throughout the thesis and the impact of the different distributed generation technologies and the different penetration levels on the transient stability is discussed by comparing the stability indicators.
24

Modeling and Control of VSC-HVDC Transmissions

Latorre, Hector January 2011 (has links)
Presently power systems are being operated under high stress level conditions unforeseen at the moment they were designed. These operating conditions have negatively impacted reliability, controllability and security margins. FACTS devices and HVDC transmissions have emerged as solutions to help power systems to increase the stability margins. VSC-HVDC transmissions are of particular interest since the principal characteristic of this type of transmission is its ability to independently control active power and reactive power. This thesis presents various control strategies to improve damping of electromechanical oscillations, and also enhance transient and voltage stability by using VSC-HVDC transmissions. These control strategies are based of different theory frames, namely, modal analysis, nonlinear control (Lyapunov theory) and model predictive control. In the derivation of the control strategies two models of VSC-HVDC transmissions were also derived. They are Injection Model and Simple Model. Simulations done in the HVDC Light Open Model showed the validity of the derived models of VSC-HVDC transmissions and the effectiveness of the control strategies. Furthermore the thesis presents an analysis of local and remote information used as inputs signals in the control strategies. It also describes an approach to relate modal analysis and the SIME method. This approach allowed the application of SIME method with a reduced number of generators, which were selected based on modal analysis. As a general conclusion it was shown that VSC-HVDC transmissions with an appropriate input signal and control strategy was an effective means to improve the system stability. / QC 20110412
25

Machine Learning Techniques for Large-Scale System Modeling

Lv, Jiaqing 31 August 2011 (has links)
This thesis is about some issues in system modeling: The first is a parsimonious representation of MISO Hammerstein system, which is by projecting the multivariate linear function into a univariate input function space. This leads to the so-called semiparamtric Hammerstein model, which overcomes the commonly known “Curse of dimensionality” for nonparametric estimation on MISO systems. The second issue discussed in this thesis is orthogonal expansion analysis on a univariate Hammerstein model and hypothesis testing for the structure of the nonlinear subsystem. The generalization of this technique can be used to test the validity for parametric assumptions of the nonlinear function in Hammersteim models. It can also be applied to approximate a general nonlinear function by a certain class of parametric function in the Hammerstein models. These techniques can also be extended to other block-oriented systems, e.g, Wiener systems, with slight modification. The third issue in this thesis is applying machine learning and system modeling techniques to transient stability studies in power engineering. The simultaneous variable section and estimation lead to a substantially reduced complexity and yet possesses a stronger prediction power than techniques known in the power engineering literature so far.
26

Machine Learning Techniques for Large-Scale System Modeling

Lv, Jiaqing 31 August 2011 (has links)
This thesis is about some issues in system modeling: The first is a parsimonious representation of MISO Hammerstein system, which is by projecting the multivariate linear function into a univariate input function space. This leads to the so-called semiparamtric Hammerstein model, which overcomes the commonly known “Curse of dimensionality” for nonparametric estimation on MISO systems. The second issue discussed in this thesis is orthogonal expansion analysis on a univariate Hammerstein model and hypothesis testing for the structure of the nonlinear subsystem. The generalization of this technique can be used to test the validity for parametric assumptions of the nonlinear function in Hammersteim models. It can also be applied to approximate a general nonlinear function by a certain class of parametric function in the Hammerstein models. These techniques can also be extended to other block-oriented systems, e.g, Wiener systems, with slight modification. The third issue in this thesis is applying machine learning and system modeling techniques to transient stability studies in power engineering. The simultaneous variable section and estimation lead to a substantially reduced complexity and yet possesses a stronger prediction power than techniques known in the power engineering literature so far.
27

Beforehand Obtaining A Safety Operation Condition By Using Daily Load Curves In Transient Stability And Graphical Software For Transient Stability Applications

Oztop, Celal 01 September 2005 (has links) (PDF)
ABSTRACT In this thesis, relationship between two most important transient stability indices, critical clearing time and generator rotor angle is examined for one machine-infinite bus system and then extended to the multimachine case and is observed to be linear. By using the linear relationship between critical clearing time and generator rotor angle and utilizing the daily load curve, a new preventive method is proposed. The aim of this method is to make all critical clearing times longer than the relay and circuit breaker combination operation time. In the proposed method, desired critical clearing times are obtained by using on line system data and daily load curves. Then desired values are adjusted by generators output rescheduling and terminals voltage control Visual computer language is used for graphical and numerical solutions. Comprehension of one machine infinite bus system and multimachine system transient stability become easier.
28

Método analítico para análise da estabilidade do gerador assíncrono através do monitoramento da tensão /

Zamperin, Joao Luiz Bergamo. January 2011 (has links)
Orientador: Laurence Duarte Colvara / Banca: Dionizio Paschoareli Junior / Banca: Walmir de Freitas Filho / Resumo: Propõe-se neste trabalho o desenvolvimento de uma metodologia analítica para análise do desempenho dinâmico/transitório dos geradores de indução conectados ao sistema de energia elétrica. O método proposto para o estudo da estabilidade das máquinas de indução baseia-se no monitoramento da tensão interna E' durante o período transitório do sistema, a qual pode comprometer a capacidade de transmissão de potência na linha, com consequente colapso da estabilidade da máquina. Deste modo, faz-se a análise do desempenho transitório da máquina pela observação da grandeza em que efetivamente reside a causa da instabilidade. O método desenvolvido foi validado por meio de simulações digitais, em duas configurações do sistema: o primeiro caso, desprezando o suporte de potência reativa, para efeito de análise nos estudos de estabilidade transitória. No segundo, é realizada a compensação dinâmica de potência reativa via SVC (Static Var Compensator). Neste caso, mesmo na presença do compensador variável de reativo, o método da tensão interna revelou-se capaz de avaliar novos limites de estabilidade para o sistema. Considerados os resultados obtidos, observa-se que o método proposto apresenta resultados suficientemente precisos para avaliar o comportamento dos geradores de indução conectados à rede elétrica / Abstract: This dissertation proposes the development of an analytical methodology for analysis of dynamic/transient performance of an induction generator connected to a bulk power system. The proposed method for studying the stability of induction machines is based on monitoring the internal voltage named E' since during the transient system, its magnitude may decrease and so causing degeneration of the transmission system capability, with consequent collapse of machine stability. Thus it is the analysis of transient performance of the machine by observing the variable that is actually the cause of instability. The analytical method was validated by means of digital simulations, in two system configurations: in the first case, no reactive support is considered, and the purpose is to analyse the machine transient stability itself. In the second, a reactive support is provided by means of the dynamic reactive compensation via SVC (Static Var Compensator). In this case, even in the presence of variable reactive compensator, the method of internal voltage proved to be able to properly assess new stability limits. The results so obtained lead to the indication that the proposed method results are accurate enough in order to evaluate the behavior of induction generators, connected to the power grid
29

Impact of Increased Penetration of DFIG Based Wind Turbine Generators on Rotor Angle Stability of Power Systems

January 2010 (has links)
abstract: An advantage of doubly fed induction generators (DFIGs) as compared to conventional fixed speed wind turbine generators is higher efficiency. This higher efficiency is achieved due to the ability of the DFIG to operate near its optimal turbine efficiency over a wider range of wind speeds through variable speed operation. This is achieved through the application of a back-to-back converter that tightly controls the rotor current and allows for asynchronous operation. In doing so, however, the power electronic converter effectively decouples the inertia of the turbine from the system. Hence, with the increase in penetration of DFIG based wind farms, the effective inertia of the system will be reduced. With this assertion, the present study is aimed at identifying the systematic approach to pinpoint the impact of increased penetration of DFIGs on a large realistic system. The techniques proposed in this work are tested on a large test system representing the Midwestern portion of the U.S. Interconnection. The electromechanical modes that are both detrimentally and beneficially affected by the change in inertia are identified. The combination of small-signal stability analysis coupled with the large disturbance analysis of exciting the mode identified is found to provide a detailed picture of the impact on the system. The work is extended to develop suitable control strategies to mitigate the impact of significant DFIG penetration on a large power system. Supplementary control is developed for the DFIG power converters such that the effective inertia contributed by these wind generators to the system is increased. Results obtained on the large realistic power system indicate that the frequency nadir following a large power impact is effectively improved with the proposed control strategy. The proposed control is also validated against sudden wind speed changes in the form of wind gusts and wind ramps. The beneficial impact in terms of damping power system oscillations is observed, which is validated by eigenvalue analysis. Another control mechanism is developed aiming at designing the power system stabilizer (PSS) for a DFIG similar to the PSS of synchronous machines. Although both the supplementary control strategies serve the purpose of improving the damping of the mode with detrimental impact, better damping performance is observed when the DFIG is equipped with both the controllers. / Dissertation/Thesis / Ph.D. Electrical Engineering 2010
30

[en] POWER SYSTEM ANALYSIS THROUGH INTERACTIVE ALGORITHMS FOR PERSONAL COMPUTERS / [pt] ASPIM - ANÁLISE DE SISTEMAS DE POTÊNCIA POR ALGORITMOS INTERATIVOS EM MICROCOMPUTADORES

LUIZ ANTONIO DA FONSECA MANSO 18 December 2006 (has links)
[pt] O presente trabalho de dissertação de mestrado tem por finalidade contribuir para uma maior dinamização do ensino de engenharia de sistemas de potência através da elaboração de um conjunto de algoritmos interativos para microcomputadores, onde o aluno poderá realizar um processo contínuo de experimentação, questionamento e revisão de conceitos. Para um bom desenvolvimento deste processo de aprendizagem é criado um ambiente amigável onde o usuário tem suas ações amparadas por mensagens explicativas e de monitoração de erros, resultando na redução do tempo gasto em cada seção de estudo e estimulando o mesmo a realizar um número maior de simulações. Foram elaboradas quatro programas de computadores. O primeiro, responsável pela estrutura conversacional e gerenciamento, foi escrito em PASCAL. Os demais foram escritos em FORTRAN77 e se restringem à execução dos cálculos necessários aos estudos de: fluxo de potência, curto-circuito e estabilidade transitória. Estes três últimos programas utilizam técnicas especiais para armazenagem de matrizes esparsas e obtenção do elementos de interesse de suas inversas. Três sistemas de potência foram escolhidos para estar imediatamente disponíveis ao usuário, sendo que um deles é utilizado no texto durante a explanação da estrutura conversacional para os estudos disponíveis. / [en] The present Dissertation aims to provide more dynamism to the teaching and learning process in power system engineering through a set of interactive personal computer algorithms. The student may carry out a continuous process of experimenting, questioning and revision of concepts. In order to better develop the leaining process, a frindly environment is created where the user has his actions supported by explanatory and error monitoring messages. This results in a reduction of the time spent in each study section and, consequently, it estimulates the student to perform a greater number of simulations. Four computer programs have been developed. There is one written in PASCAL language, responsible for the following studies: load flow, slort-circuit and transient stability. These programs use special sparsity techniques and programming. Three power systems have been choosen to be immediately available to the user. One of them is used in the text during the explanation process of the conversational structure of the power system studies.

Page generated in 0.2774 seconds