Spelling suggestions: "subject:"[een] TRYPTOPHAN"" "subject:"[enn] TRYPTOPHAN""
11 |
Synthesis of tryptophan amides and lavendamycin analogsMirzaei, Hamid January 2001 (has links)
The synthesis of 7-N-acetyl-3'-demethyllavendamycin propyl ester (61 ), 7-N-butr-3'-demethyllavendamycin amide of N,N-dimethylethylenediamine (62), 7-N-acetyllavendamycin butyl amide (64), 7-N- acetyllavendamycin amide of ethanolamine (63) are described. Incorporation of the Pictet-Spengler condensation of 7acetamido-2-formylquinoline-5, 8-dione (32) or 7-butyramido-2-formylquinoline-5, 8dione (7) with tryptophan propyl ester (65), L-tryptophan amide of N, N dimethylethylenediamine (66), f3-methyltryptophan butyl amide (68), or methyltryptophan amide of ethanolamine (67) in xylene afforded four lavendamycin analogs.Aldehydes 32, 74 and 86 were prepared according to the following general procedure. Nitration of 8-hydroxy-2-methylquinoline (69) yielded 8-hydroxy-2-methyl - 5,7-dinitroquinoline (29). Compound 29 was then hydrogenated and acylated with acetic anhydride or butyric anhydride or 2-furoyl chloride followed by hydrolysis to yield 5,7diacetamido-8-hydroxy-2-methylquinoline (75) or 5,7- dibutyramido-8- hydroxy-2methylquinoline (73) or 5,7-difuroylamino-8-hydroxy-2- methylquinoline (84). Compounds 75 and 73 and 84 were oxidized by potassium dichromate to give the corresponding 5,8-diones 31 or 72 or 85. Treatment of 31 or 72 or 85 with selenium dioxide in refluxing 1,4-dioxane afforded compounds 32 and 74 and 86, respectively.Tryptophan propyl ester (65) was synthesized via a Fischer esterification of Ltryptophan with propyl alcohol saturated with hydrogen chloride. Compounds 66, 67, 68, 76, 77, 78, 79, and 80 were synthesized via the conversion of esters to amides with dimethylaluminum amides. Tryptophan methyl ester (23) and (3-methyltryptophan methylester (11) were treated with premixed trimethylaluminum and primary amines and refluxed to afford the desired tryptophan and (3-methyltryptophan amides.The structures of the novel compounds 61, 62, 63, 64, 66, 67, 68, 76, 77, 78, 79, 80, were confirmed through 1H NMR, IR, EIMS, and HRMS. Elemental analyses of Compounds 66, 68, 76, 77, 78 and 80 were also included. 1H NMR and IR for known compounds 29, 30, 31, 32, 71, 73, 74, 75, 84, 85, 86 were provided also. / Department of Chemistry
|
12 |
Tryptophan-related neurotransmission in the brain disturbances associated with experimental hepatic encephalopathy /Bergqvist, Peter B. F. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
|
13 |
Tryptophan-related neurotransmission in the brain disturbances associated with experimental hepatic encephalopathy /Bergqvist, Peter B. F. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
|
14 |
The effect of 6-Methoxy-2-Benzoxazolinone (6-MBOA) on indoleamine regulation and its possible role in depressionTanda, Sindiswa Eunice January 2000 (has links)
Tryptophan is an essential amino acid that is obtained from the diet. Approximately 98 % of ingested tryptophan is metabolized by the enzyme tryptophan 2,3-dioxygenase (TDO). The metabolism of tryptophan by TDO is an important determinant of tryptophan bioavailability to the brain for serotonin (5-HT) biosynthesis, an essential amine in affective disorders such as depression. Studies done on circadian rhythmicity of the enzyme activity have shown that, TDO activity is high during the scoto-phase (dark-phase), which is attributable to the de novo enzyme synthesis that occurs during this phase. 6-Methoxy-2-benzoxazolinontr-(6-MBOA), a structural analogue of melatonin (aMT) was shown to inhibit TDO activity in both the photo-phase (light-phase) and the scoto-phase with greater potency during the light-phase. Further studies were directed at demonstrating the effects of 6-MBOA on the brain tryptophan hydroxylase (TH) activity, which is a rate limiting enzyme in 5-HT biosynthesis and subsequently on 5-HT levels. The findings showed that, 6-MBOA induces TH activity with a concomitant rise in brain 5-HT levels. The blockade of 5-HT re-uptake into the presynaptic neuron leads to an increase in 5-HT available for the stimulatory action of 5-HT receptors. An attempt to establish whether the administration of 6-MBOA would block the binding of 5-HT to receptors on the synaptosomal membrane showed that 6-MBO A only inhibits the binding of 5 -HT at specific concentrations. In view of the positive effects imposed by 6-MBOA on brain 5-HT levels, urinary 5-hydroxyindole acetic acid (5-HIAA) excretion was measured before and after treatment with 6-MBOA. 5-HIAA excretion was found to be significantly increased after 6-MBOA treatment. Extensive research on the biosynthesis of pineal metabolites has been conducted in the past two decades. The pineal metabolites are synthesized from the precursor tryptophan. In order to obtain an overall picture of the effect of6-MBOA on pineal indole metabolism, an organ culture technique was employed. The results obtained showed that although 6-MBOA administration to rats caused a significant increase in aMT production, there was an insignificant increase in NAS production. This is an immediate precursor of aMT. Other pineal indoles were not affected at all by 6-MBOA administration. Furthermore, the production of pineal NAS and aMT showed an inter-individual variation with some animals producing very high, some very low and some produced average levels of these two metabolites in both photo and scoto-phase experiments. A study undertaken to investigate the circadian rhythm in endogenous aMT production using the competitive ELISA technique showed a clear pattern with high levels of aMT produced during the dark-phase and low levels ofaMT produced during the light-phase. Furthermore, the administration of6-MBOA to rats lead to a significant rise in endogenous aMT production.
|
15 |
Probing the functional and conformational dynamics of the chaperonins GroEL and GroESKad, Neil M. January 1998 (has links)
No description available.
|
16 |
The selection and study of mutants of the yeast Saccharomyces cerevisiae that are defective for translocation of proteins into the endoplasmic reticulumToyn, Jeremy H. January 1989 (has links)
No description available.
|
17 |
The potential of phosphorescence spectroscopy as a method for studying protein conformation.Larkindale, Philippa January 1971 (has links)
No description available.
|
18 |
Development of procedures for the determination of tryptophanVollmer, Eleanor Laura, 1921- January 1972 (has links)
No description available.
|
19 |
The photodestruction of tryptophan residues in peptides, proteins and the intact ocular lensTassin, Jeffrey Dale 08 1900 (has links)
No description available.
|
20 |
UV radiation-induced photochemical damage of tryptophan in peptides, proteins and ocular lensesHibbard, Lisa B. 05 1900 (has links)
No description available.
|
Page generated in 0.0553 seconds