• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 789
  • 266
  • 113
  • 112
  • 87
  • 32
  • 22
  • 22
  • 20
  • 14
  • 14
  • 11
  • 5
  • 4
  • 4
  • Tagged with
  • 1967
  • 579
  • 530
  • 507
  • 320
  • 268
  • 232
  • 220
  • 214
  • 184
  • 180
  • 172
  • 170
  • 148
  • 148
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Design, Simulation, Prototype, and Testing of a Notched Blade Energy Generation System

Cabra, Henry 19 March 2014 (has links)
This dissertation addresses the design, simulation, prototype, and test of a new energy generation system, which transforms rotational motion into electricity by the use of an innovative turbine-generator. The system is divided in two assembled subsystems that interact to finally transform kinetic energy into electricity. The first subsystem is a miniaturized notched impulse turbine system, and the second one is a millimeter permanent magnet generator (PMG) assembled into the turbine. The conversion of biomechanical energy to electric energy, using clean and free energy produced by a living organism, is being increasingly researched [1]-[11]. These are all viable options, but advantages and disadvantages of each type of energy conversions should be evaluated individually to determine key factors such as efficiency as an energy harvesting method, the implementation cost, size, and the final applications where they will be used. Through this dissertation, a new option of green energy conversion is made available; focusing on the use of turbines to extract energy from microfluidics, with diverse application in biomedical, military/aerospace, and home areas. These systems have the potential of converting mechanical movement energy, and hydraulic energy into electric energy that may be sufficient for self-powering nano/micro devices and nano/micro systems. A flow, with constant pressure, a magnetic generator, and a novel impulse turbine design are combined to form a self-contained miniaturized generator system. The turbine consists of two main parts: a bearingless rotor and the enclosure or casing; while the miniaturized magnetic generator is a permanent magnet brushless machine, consisting of permanent magnets in a ring configuration and radial coils. A permanent pressure, from microfluidic pressure system, is the force used to move the blades. This rotational motion of the turbine is transformed into electricity using magnetic induction, formed by permanent magnets on the rotor and nine coils fixed in the holder of the turbine. The electricity is generated when the magnetic field rotates and moves past the conductor, which induces a current according to Faraday's Law [1-3]. The system has potential uses not only in medical equipment, but in automotive applications, home appliances, and aquatic and ventilation systems.
322

Modélisation en régime nominal et partiel de l'écoulement méridien dans les turbomachines axiales et hélicocentrifuges

Ercolino, José 12 January 2001 (has links) (PDF)
Lors de cette étude, nous avons développé un code d'analyse rapide de l'écoulement méridien dans les turbomachines. Ce code est basé sur la résolution des équations dynamiques moyennées qui régissent l'écoulement interne stationnaire et non visqueux dans le repère relatif. On a utilisé une combinaison linaire des équations de quantité de mouvement selon les directions axiale et radiale pour éviter au terme source des équations de devenir singulier. Le modèle ainsi développé est particulièrement adapté au cas le plus général des machines de compression ; à savoir, les machines mixtes. On a développé également les équations permettant, à l'aide de l'hypothèse d'un nombre infini d'aubages et en supposant l'écoulement axisymétrique, de calculer à la fois les forces d'aubages et la cinématique simplifiée de l'écoulement aube à aube. Celle-ci prend en compte les données géométriques fournies par les constructeurs ou les logiciels de conception globale. Cette dernière démarche assure une liaison très efficace dans le cadre de l'avant-projet des turbomachines où, dans une première approche d'optimisation, la géométrie des pales est introduite de manière très simple. Les résultats obtenus semblent très cohérents en débit nominal mais également en débit partiel comme le montrent les comparaisons qualitatives avec des résultats d'essais.
323

Modélisation en régime nominal et partiel de l'écoulement méridien dans les turbomachines axiales et hélicocentrifuges

Ercolino, José 12 January 2001 (has links) (PDF)
Lors de cette étude, nous avons développé un code d'analyse rapide de l'écoulement méridien dans les turbomachines. Ce code est basé sur la résolution des équations dynamiques moyennées qui régissent l'écoulement interne stationnaire et non visqueux dans le repère relatif. On a utilisé une combinaison linaire des équations de quantité de mouvement selon les directions axiale et radiale pour éviter au terme source des équations de devenir singulier. Le modèle ainsi développé est particulièrement adapté au cas le plus général des machines de compression; à savoir, les machines mixtes. On a développé également les équations permettant, à l'aide de l'hypothèse d'un nombre infini d'aubages et en supposant l'écoulement axisymétrique, de calculer à la fois les forces d'aubages et la cinématique simplifiée de l'écoulement aube à aube. Celle-ci prend en compte les données géométriques fournies par les constructeurs ou les logiciels de conception globale. Cette dernière démarche assure une liaison très efficace dans le cadre de l'avant-projet des turbomachines où, dans une première approche d'optimisation, la géométrie des pales est introduite de manière très simple. Les résultats obtenus semblent très cohérents en débit nominal mais également en débit partiel comme le montrent les comparaisons qualitatives avec des résultats d'essais.
324

Power Generation and Blade Flow Measurements of a Full Scale Wind Turbine

Gaunt, Brian Geoffrey January 2009 (has links)
Experimental research has been completed using a custom designed and built 4m diameter wind turbine in a university operated wind facility. The primary goals of turbine testing were to determine the power production of the turbine and to apply the particle image velocimetry (PIV) technique to produce flow visualization images and velocity vector maps near the tip of a blade. These tests were completed over a wide range of wind speeds and turbine blade rotational speeds. This testing was also designed to be a preliminary study of the potential for future research using the turbine apparatus and to outline it's limitations. The goals and results of other large scale turbine tests are also briefly discussed with a comparison outlining the unique aspects of the experiment outlined in this thesis. Power production tests were completed covering a range of mean wind speeds, 6.4 m/s to 11.1 m/s nominal, and rotational rates, 40 rpm to 220 rpm. This testing allowed the total power produced by the blades to be determined as a function of input wind speed, as traditionally found in power curves for commercial turbines. The coefficient of power, Cp, was determined as a function of the tip speed ratio which gave insight into the peak power production of the experimental turbine. It was found, as expected, that the largest power production occurred at the highest input wind speed, 11.1 m/s, and reached a mean value of 3080 W at a rotational rate of 220 rpm. Peak Cp was also found, as a function of the tip speed ratio, to approach 0.4 at the maximum measurable tip speed ratio of 8. Blade element momentum (BEM) theory was also implemented as an aerodynamic power and force prediction tool for the given turbine apparatus. Comparisons between the predictions and experimental results were made with a focus on the Cp power curve to verify the accuracy of the initial model. Although the initial predictions, based on lift and drag curves found in Abbot and Von Doenhoff (1959), were similar to experimental results at high tip speed ratios an extrapolation of the data given by Hoffman et al. (1996) was found to more closely match the experimental results over the full range of tip speed ratios. Finally PIV was used to produce flow visualization images and corresponding velocity maps of the chord-wise air flow over an area at a radius ratio of 0.9, near the tip of a blade. This technique provided insight into the flow over a blade at three different tip speed ratios, 4, 6 and 8, over a range of wind speeds and rotational rates. A discussion of the unique aspects and challenges encountered using the PIV technique is presented including: measuring an unbounded external flow on a rotating object and the turbulence in the free stream affecting the uniform seeding and stability of the flow.
325

A model to improve the Wind Turbine Gearbox Lubrication system: System architecture and contractual process :

Bandari, Ali, Vasudevan, Vivek January 2011 (has links)
Wind energy accounts for 9.1% of the total energy capacity in Europe. Recent studies have raised critical questions regarding the dependability of current wind turbines. The statistical data reveals that gear box is the most critical component reducing dependability caused by increased failure rate, downtime, and high repair cost (J. Ribrant and L. Bertling, 2007). Gear box failures in wind farms reveal a staggering 19.4 % of downtime of operation (J. Ribrant and L. Bertling, 2007). A significant reduction in the failure rate has been observed in the recent years, but downtime of operation and high repair investment still remains a bottleneck. Wear is the most critical failure mode and a number of theories have been proposed in order to understand the system behavior of wear mechanism. The empirical and historical incident data shows that the lubrication system has the largest share of contribution of gearbox failures and wear rate. On other hand, a number of commercial lubrication system have developed to cope with wear mechanism, however, these systems have different capabilities and characteristics and needed to be assessed in a new life cycle perspective. The purpose of the thesis is to analyze the influence of lubrication system on the current problem of wear in Wind Turbine Gearbox and improve the existing lubrication system architecture. The research methodology adopted is System Engineering approach with architecture assessment tools. The expected result of the thesis is effective and efficient wind turbine gearbox lubrication system architecture and an efficient contractual process between lubrication system provider and purchaser.
326

Power Generation and Blade Flow Measurements of a Full Scale Wind Turbine

Gaunt, Brian Geoffrey January 2009 (has links)
Experimental research has been completed using a custom designed and built 4m diameter wind turbine in a university operated wind facility. The primary goals of turbine testing were to determine the power production of the turbine and to apply the particle image velocimetry (PIV) technique to produce flow visualization images and velocity vector maps near the tip of a blade. These tests were completed over a wide range of wind speeds and turbine blade rotational speeds. This testing was also designed to be a preliminary study of the potential for future research using the turbine apparatus and to outline it's limitations. The goals and results of other large scale turbine tests are also briefly discussed with a comparison outlining the unique aspects of the experiment outlined in this thesis. Power production tests were completed covering a range of mean wind speeds, 6.4 m/s to 11.1 m/s nominal, and rotational rates, 40 rpm to 220 rpm. This testing allowed the total power produced by the blades to be determined as a function of input wind speed, as traditionally found in power curves for commercial turbines. The coefficient of power, Cp, was determined as a function of the tip speed ratio which gave insight into the peak power production of the experimental turbine. It was found, as expected, that the largest power production occurred at the highest input wind speed, 11.1 m/s, and reached a mean value of 3080 W at a rotational rate of 220 rpm. Peak Cp was also found, as a function of the tip speed ratio, to approach 0.4 at the maximum measurable tip speed ratio of 8. Blade element momentum (BEM) theory was also implemented as an aerodynamic power and force prediction tool for the given turbine apparatus. Comparisons between the predictions and experimental results were made with a focus on the Cp power curve to verify the accuracy of the initial model. Although the initial predictions, based on lift and drag curves found in Abbot and Von Doenhoff (1959), were similar to experimental results at high tip speed ratios an extrapolation of the data given by Hoffman et al. (1996) was found to more closely match the experimental results over the full range of tip speed ratios. Finally PIV was used to produce flow visualization images and corresponding velocity maps of the chord-wise air flow over an area at a radius ratio of 0.9, near the tip of a blade. This technique provided insight into the flow over a blade at three different tip speed ratios, 4, 6 and 8, over a range of wind speeds and rotational rates. A discussion of the unique aspects and challenges encountered using the PIV technique is presented including: measuring an unbounded external flow on a rotating object and the turbulence in the free stream affecting the uniform seeding and stability of the flow.
327

Reduced Order Structural Modeling of Wind Turbine Blades

Jonnalagadda, Yellavenkatasunil 2011 August 1900 (has links)
Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled using beam models. The accuracy in the predictions of the structural behavior using beam models depends on the accuracy in the prediction of their effective section properties. Several techniques were proposed in the literature for predicting the effective section properties. Most of these existing techniques have limitations because of the assumptions made in their approaches. Two generalized beam theories, Generalized Timoshenko and Generalized Euler-Bernoulli, for the static analysis based on the principles of the simple 1D-theories are developed here. Homogenization based on the strain energy equivalence principle is employed to predict the effective properties for these generalized beam theories. Two efficient methods, Quasi-3D and Unit Cell, are developed which can accurately predict the 3D deformations in beams under the six fundamental deformation modes: extension, two shears, torsion and two flexures. These methods help in predicting the effective properties using the homogenization technique. Also they can recover the detailed 3D deformations from the predictions of 1D beam analysis. The developed tools can analyze two types of slender members 1) slender members with invariant geometric features along the length and 2) slender members with periodically varying geometric features along the length. Several configurations were analyzed for the effective section properties and the predictions were validated using the expensive 3D analysis, strength of materials and Variational Asymptotic Beam Section Analysis (VABS). The predictions from the new tools showed excellent agreement with full 3D analysis. The predictions from the strength of materials showed disagreement in shear and torsional properties. Explanations for the same are provided recalling the assumptions made in the strength of materials approach.
328

Utilization Of Cfd Tools In The Design Process Of A Francis Turbine

Okyay, Gizem 01 September 2010 (has links) (PDF)
Francis type turbines are commonly used in hydropower generation. Main components of the turbine are spiral case, stay vanes, guide vanes, turbine runner and the draft tube. The dimensions of these parts are dependent mainly on the design discharge, head and the speed of the rotor of the generators. In this study, a methodology is developed for parametric optimization by incorporating Matlab codes developed and commercial Computational Fluid Dynamics (CFD) codes into the design process. The design process starts with the selection of initial dimensions from experience curves, iterates to improve the overall hydraulic efficiency and obtain the detailed description of the final geometry for manufacturing with complete visualization of the computed flow field. A Francis turbine designed by the procedure developed has been manufactured and installed for energy production.
329

Design And Performance Analysis Of A Pump-turbine System Using Computational Fluid Dynamics

Yildiz, Mehmet 01 October 2011 (has links) (PDF)
In this thesis, a parametric methodology is investigated to design a Pump-Turbine system using Computational Fluid Dynamics ( CFD ). The parts of Pump-Turbine are created parametrically according to the experience curves and theoretical design methods. Then, these parts are modified to obtain 500 kW turbine working as a pump with 28.15 meters head. The final design of Pump-Turbine parts are obtained by adjusting parameters according to the results of the CFD simulations. The designed parts of the Pump-Turbine are spiral case, stay vanes, guide vanes, runner and draft tube. These parts are designed to obtain not only turbine mode properties but also pump mode properties.
330

1D engine simulation of a turbocharged SI-engine with CFD on components

Renberg, Ulrica January 2008 (has links)
<p>1D engine simulations of turbocharged engines are difficult to <!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } --></p><p>Techniques that can increase the SI- engine efficiency while keeping the emissions very low is to reduce the engine displacement volume combined with a charging system. Advanced systems are needed for an effective boosting of the engine and today 1D engine simulation tools are often used for their optimization.</p><p>This thesis concerns 1D engine simulation of a turbocharged SI engine and the introduction of CFD computations on components as a way to assess inaccuracies in the 1D model.</p><p>1D engine simulations have been performed on a turbocharged SI engine and the results have been validated by on-engine measurements in test cell. The operating points considered have been in the engine’s low speed and load region, with the turbocharger’s waste-gate closed.</p><p>The instantaneous on-engine turbine efficiency was calculated for two different turbochargers based on high frequency measurements in test cell. Unfortunately the instantaneous mass flow rates and temperatures directly upstream and downstream of the turbine could not be measured and simulated values from the calibrated engine model were used. The on-engine turbine efficiency was compared with the efficiency computed by the 1D code using steady flow data to describe the turbine performance.</p><p>The results show that the on-engine turbine efficiency shows a hysteretic effect over the exhaust pulse so that the discrepancy between measured and quasi-steady values increases for decreasing mass flow rate after a pulse peak.</p><p>Flow modeling in pipe geometries that can be representative to those of an exhaust manifold, single bent pipes and double bent pipes and also the outer runners of an exhaust manifold, have been computed in both 1D and 3D under steady and pulsating flow conditions. The results have been compared in terms of pressure losses.</p><p>The results show that calculated pressure gradient for a straight pipe under steady flow is similar using either 1D or 3D computations. The calculated pressure drop over a bend is clearly higher1D engine simulations of turbocharged engines are difficult to <!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } -->using 1D computations compared to 3D computations, both for steady and pulsating flow. Also, the slow decay of the secondary flow structure that develops over a bend, gives a higher pressure gradient in the 3D calculations compared to the 1D calculation in the straight pipe parts downstream of a bend.</p><p> </p>

Page generated in 0.0376 seconds