• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 38
  • 16
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 206
  • 206
  • 35
  • 33
  • 31
  • 30
  • 30
  • 29
  • 27
  • 25
  • 24
  • 24
  • 24
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Finite difference methods for 1st Order in time, 2nd order in space, hyperbolic systems used in numerical relativity

Chirvasa, Mihaela January 2010 (has links)
This thesis is concerned with the development of numerical methods using finite difference techniques for the discretization of initial value problems (IVPs) and initial boundary value problems (IBVPs) of certain hyperbolic systems which are first order in time and second order in space. This type of system appears in some formulations of Einstein equations, such as ADM, BSSN, NOR, and the generalized harmonic formulation. For IVP, the stability method proposed in [14] is extended from second and fourth order centered schemes, to 2n-order accuracy, including also the case when some first order derivatives are approximated with off-centered finite difference operators (FDO) and dissipation is added to the right-hand sides of the equations. For the model problem of the wave equation, special attention is paid to the analysis of Courant limits and numerical speeds. Although off-centered FDOs have larger truncation errors than centered FDOs, it is shown that in certain situations, off-centering by just one point can be beneficial for the overall accuracy of the numerical scheme. The wave equation is also analyzed in respect to its initial boundary value problem. All three types of boundaries - outflow, inflow and completely inflow that can appear in this case, are investigated. Using the ghost-point method, 2n-accurate (n = 1, 4) numerical prescriptions are prescribed for each type of boundary. The inflow boundary is also approached using the SAT-SBP method. In the end of the thesis, a 1-D variant of BSSN formulation is derived and some of its IBVPs are considered. The boundary procedures, based on the ghost-point method, are intended to preserve the interior 2n-accuracy. Numerical tests show that this is the case if sufficient dissipation is added to the rhs of the equations. / Diese Doktorarbeit beschäftigt sich mit der Entwicklung numerischer Verfahren für die Diskretisierung des Anfangswertproblems und des Anfangs-Randwertproblems unter Einsatz von finite-Differenzen-Techniken für bestimmte hyperbolischer Systeme erster Ordnung in der Zeit und zweiter Ordnung im Raum. Diese Art von Systemen erscheinen in einigen Formulierungen der Einstein'schen-Feldgleichungen, wie zB. den ADM, BSSN oder NOR Formulierungen, oder der sogenanten verallgemeinerten harmonischen Darstellung. Im Hinblick auf das Anfangswertproblem untersuche ich zunächst tiefgehend die mathematischen Eigenschaften von finite-Differenzen-Operatoren (FDO) erster und zweiter Ordnung mit 2n-facher Genaugigkeit. Anschließend erweitere ich eine in der Literatur beschriebene Methode zur Stabilitätsanalyse für Systeme mit zentrierten FDOs in zweiter und vierter Genauigkeitsordung auf Systeme mit gemischten zentrierten und nicht zentrierten Ableitungsoperatoren 2n-facher Genauigkeit, eingeschlossen zusätzlicher Dämpfungsterme, wie sie bei numerischen Simulationen der allgemeinen Relativitätstheorie üblich sind. Bei der Untersuchung der einfachen Wellengleichung als Fallbeispiel wird besonderes Augenmerk auf die Analyse der Courant-Grenzen und numerischen Geschwindigkeiten gelegt. Obwohl unzentrierte, diskrete Ableitungsoperatoren größere Diskretisierungs-Fehler besitzen als zentrierte Ableitungsoperatoren, wird gezeigt, daß man in bestimmten Situationen eine Dezentrierung des numerischen Moleküls von nur einem Punkt bezüglich des zentrierten FDO eine höhere Genauigkeit des numerischen Systems erzielen kann. Die Wellen-Gleichung in einer Dimension wurde ebenfalls im Hinblick auf das Anfangswertproblem untersucht. In Abhängigkeit des Wertes des sogenannten Shift-Vektors, müssen entweder zwei (vollständig eingehende Welle), eine (eingehende Welle) oder keine Randbedingung (ausgehende Welle) definiert werden. In dieser Arbeit wurden alle drei Fälle mit Hilfe der 'Ghost-point-methode' numerisch simuliert und untersucht, und zwar auf eine Weise, daß alle diese Algorithmen stabil sind und eine 2n-Genauigkeit besitzen. In der 'ghost-point-methode' werden die Evolutionsgleichungen bis zum letzen Punkt im Gitter diskretisiert unter Verwendung von zentrierten FDOs und die zusätzlichen Punkte die am Rand benötigt werden ('Ghost-points') werden unter Benutzung von Randwertbedingungen und Extrapolationen abgeschätzt. Für den Zufluß-Randwert wurde zusätzlich noch eine andere Implementierung entwickelt, welche auf der sogenannten SBP-SAT (Summation by parts-simulatanous approximation term) basiert. In dieser Methode werden die diskreten Ableitungen durch Operatoren angenähert, welche die 'Summation-by-parts' Regeln erfüllen. Die Randwertbedingungen selber werden in zusätzlichen Termen integriert, welche zu den Evolutionsgleichnungen der Punkte nahe des Randes hinzuaddiert werden und zwar auf eine Weise, daß die 'summation-by-parts' Eigenschaften erhalten bleiben. Am Ende dieser Arbeit wurde noch eine eindimensionale (kugelsymmetrische) Version der BSSN Formulierung abgeleitet und einige physikalisch relevanten Anfangs-Randwertprobleme werden diskutiert. Die Randwert-Algorithmen, welche für diesen Fall ausgearbeitet wurden, basieren auf der 'Ghost-point-Methode' and erfüllen die innere 2n-Genauigkeit solange genügend Reibung in den Gleichungen zugefügt wird.
62

Transfer-of-approximation Approaches for Subgrid Modeling

Wang, Xin 24 July 2013 (has links)
I propose two Galerkin methods based on the transfer-of-approximation property for static and dynamic acoustic boundary value problems in seismic applications. For problems with heterogeneous coefficients, the polynomial finite element spaces are no longer optimal unless special meshing techniques are employed. The transfer-of-approximation property provides a general framework to construct the optimal approximation subspace on regular grids. The transfer-of-approximation finite element method is theoretically attractive for that it works for both scalar and vectorial elliptic problems. However the numerical cost is prohibitive. To compute each transfer-of-approximation finite element basis, a problem as hard as the original one has to be solved. Furthermore due to the difficulty of basis localization, the resulting stiffness and mass matrices are dense. The 2D harmonic coordinate finite element method (HCFEM) achieves optimal second-order convergence for static and dynamic acoustic boundary value problems with variable coefficients at the cost of solving two auxiliary elliptic boundary value problems. Unlike the conventional FEM, no special domain partitions, adapted to discontinuity surfaces in coe cients, are required in HCFEM to obtain the optimal convergence rate. The resulting sti ness and mass matrices are constructed in a systematic procedure, and have the same sparsity pattern as those in the standard finite element method. Mass-lumping in HCFEM maintains the optimal order of convergence, due to the smoothness property of acoustic solutions in harmonic coordinates, and overcomes the numerical obstacle of inverting the mass matrix every time update, results in an efficient, explicit time step.
63

The Tracing of a Contaminant (Tritium) from Candu Sources: Lake Ontario

King, Karen June January 1997 (has links)
In any research program we begin with a hypothesis and when our expected results do not concur with the observed results we must try and understand the dynamics behind the changed process. In this study we were trying to understand the flux between regional groundwater systems, surface waters and sedimentation processes in order to predict the fate of contaminants entering one of the larger bodies of water in the world- Lake Ontario. This lake has increased levels of tritium due to anthropogenic inputs. Our first approach to the problem was to look at tritium fluxes within the system . Hydrological balances were constructed and a series of sediment cores were taken longitudinally and laterally across the lake. The second approach was to quantify the sediment accumulation rate (SAR) within the depositional basins and zones of erosion in order to improve the linkage between erosion control (sedimentation) and the water quality program. In the last chapter the movement of tritium, by molecular diffusion, through the clayey-silts of Lake Ontario is quantified in terms of an effective diffusion coefficient. In these sediments effective diffusion equals molecular diffusion. In a laboratory experiment four cores of lake sediment were spiked with tritium . The resulting concentration gradient changes in the sediment porewaters after six weeks could be modeled by an analytical one- dimensional diffusive transport equation. Results calculated the average lab diffusion coefficient to be 2. 7 x 10 - 5cm 2. sec -1 which is twice that determined by Wang et al, 1952 but still reasonable. Short cores (50 cm) from lake Ontario had observed tritium concentrations with depth that reflected a variable diffusive profile. The increases and decreases in tritium with depth could be correlated between cores. Monthly tritium emission data was obtained and correlations between peaks in the tritium profile and emissions were observed. Monthly variations in release emissions corresponded to approximately a one centimeter slice of core. An average calculated diffusion coefficient of theses cores was 1. 0 x 10 -5 cm 2. sec -1 which compares to Wang's coefficient of 1. 39 x 10 -5 cm 2. sec -1. This implies that tritium is moving through the sediment column at a rate equal to diffusion. The results were obtained for smoothed values. It was not possible to model the perturbations of the data with a one dimensional model. The dynamics of the system imply that tritium could be used as a biomonitor for reactor emissions, mixing time and current direction scenarios and that a better understanding of this process could be gained by future coring studies and a new hypothesis.
64

Contributions to the Study of the Validity of Huygens' Principle for the Non-self-adjoint Scalar Wave Equation on Petrov Type D Spacetimes

Chu, Kenneth January 2000 (has links)
This thesis makes contributions to the solution of Hadamard's problem through an examination of the question of the validity of Huygens'principle for the non-self-adjoint scalar wave equation on a Petrov type D spacetime. The problem is split into five further sub-cases based on the alignment of the Maxwell and Weyl principal spinors of the underlying spacetime. Two of these sub-cases are considered, one of which is proved to be incompatible with Huygens' principle, while for the other, it is shown that Huygens' principle implies that the two principal null congruences of the Weyl tensor are geodesic and shear-free. Furthermore, an unpublished result of McLenaghan regarding symmetric spacetimes of Petrov type D is independently verified. This result suggests the possible existence of counter-examples of the Carminati-McLenaghan conjecture.
65

The Tracing of a Contaminant (Tritium) from Candu Sources: Lake Ontario

King, Karen June January 1997 (has links)
In any research program we begin with a hypothesis and when our expected results do not concur with the observed results we must try and understand the dynamics behind the changed process. In this study we were trying to understand the flux between regional groundwater systems, surface waters and sedimentation processes in order to predict the fate of contaminants entering one of the larger bodies of water in the world- Lake Ontario. This lake has increased levels of tritium due to anthropogenic inputs. Our first approach to the problem was to look at tritium fluxes within the system . Hydrological balances were constructed and a series of sediment cores were taken longitudinally and laterally across the lake. The second approach was to quantify the sediment accumulation rate (SAR) within the depositional basins and zones of erosion in order to improve the linkage between erosion control (sedimentation) and the water quality program. In the last chapter the movement of tritium, by molecular diffusion, through the clayey-silts of Lake Ontario is quantified in terms of an effective diffusion coefficient. In these sediments effective diffusion equals molecular diffusion. In a laboratory experiment four cores of lake sediment were spiked with tritium . The resulting concentration gradient changes in the sediment porewaters after six weeks could be modeled by an analytical one- dimensional diffusive transport equation. Results calculated the average lab diffusion coefficient to be 2. 7 x 10 - 5cm 2. sec -1 which is twice that determined by Wang et al, 1952 but still reasonable. Short cores (50 cm) from lake Ontario had observed tritium concentrations with depth that reflected a variable diffusive profile. The increases and decreases in tritium with depth could be correlated between cores. Monthly tritium emission data was obtained and correlations between peaks in the tritium profile and emissions were observed. Monthly variations in release emissions corresponded to approximately a one centimeter slice of core. An average calculated diffusion coefficient of theses cores was 1. 0 x 10 -5 cm 2. sec -1 which compares to Wang's coefficient of 1. 39 x 10 -5 cm 2. sec -1. This implies that tritium is moving through the sediment column at a rate equal to diffusion. The results were obtained for smoothed values. It was not possible to model the perturbations of the data with a one dimensional model. The dynamics of the system imply that tritium could be used as a biomonitor for reactor emissions, mixing time and current direction scenarios and that a better understanding of this process could be gained by future coring studies and a new hypothesis.
66

Surface-Generated Ambient Noise in an Isovelocity Waveguide with a Non-Homogeneous Fluid Sediment Layer

Hsu, Shih-Tzung 16 May 2001 (has links)
In the traditional analysis of acoustic wave propagation in an ocean waveguide, it's generally assumed that acoustic properties, including density and sound speed profile at seabed are taken to be constant. However, recent experimental data provided by Hamilton~(1980)~ have shown that the sediment layer in the seabed experiences a transitional change in which the density and the sound speed vary continuously from one value at the top to another at the bottom of the layer. The objective of this study is to investigate the surface-generated ambient noise in an isovelocity waveguide with a non-homogeneous fluid sediment layer. The noise model was first proposed by Kuperman and Ingenito~(1980) in the study of surface-generated ambient noise using normal mode approach, and the model proposed by Robins (1993) in the study of the sediment layer change in which the density and the sound speed vary continuously. It is demonstrated that the noise intensity may be affected by the stratification mainly through the continuous spectrum, in that the continuous spectrum is equally important as the normal modes in the present analysis. The continuous variation of the sediment layer reduces the contrast of the interface, which in turn affects the wavenumber spectrum, particularly in the continuous spectrum region. The results show that the horizontal correlation length of the noise field increases as that of the noise random sourse increase, but the vertical correlation length of the noise field decreases as that of the noise random sourse increase.
67

Optimal system of subalgebras and invariant solutions for a nonlinear wave equation

Talib, Ahmed Abedelhussain January 2009 (has links)
This thesis is devoted to use Lie group analysis to obtain all invariant solutions by constructing optimal system of one-dimensional subalgebras of the Lie algebra L5 for a nonlinear wave equation. I will show how the given symmetries ( Eq.2) are admitted by using partial differential equation (Eq.1), In addition to obtain the commutator table by using the same given symmetries. Subsequently, I calculate the transformations of the generators with the Lie algebra L5, which provide the 5-parameter group of linear transformations for the operators. Finally, I construct the invariant solutions for each member of the optimal system.
68

Longtime dynamics of hyperbolic evolutionary equations in ubounded domains and lattice systems

Fall, Djiby 01 June 2005 (has links)
This dissertation is a contribution to the the study of the longtime dynamics of evolutionary equations in unbounded domains. It is of particular interest to prove the existence of global attractors for solutions of such equations. Th this end one need in general some type of asymtotical compactness. In the case the evolutionary PDE is defined on a bounded domain, asymptotical compactness follows from the regularity estimates and the compactnes of Sobolev embeddings and therefore the existence of attractors has been established for most of the disipative equations of mathematocal physics in a bounded domain. The problem is more challenging when the domain is unbounded since the Sobolev embeddings are no longer comapct, so that the usual regularity estimates may not be sufficient.To overcome this obstacle of compactness, A.V. Babin and M.I. Vishik introduced some weighted Sobolev spaces. In their pioneering paper, Proc. Roy. Soc. Edinb.
69

Symbolic Computations of Exact Solutions to Nonlinear Integrable Di®erential Equations

Grupcev, Vladimir 10 April 2007 (has links)
In this thesis, first the tanh method, a method for obtaining exact traveling wave solutions to nonlinear differential equations, is introduced and described. Then the method is applied to two classes of Nonlinear Partial Differential Equations. The first one is a system of two (1 + 1)-dimensional nonlinear Korteweg-de Vries (KdV) type equations. The second one is a (3 + 1)-dimensional nonlinear wave equation. At the end, a few graphic representations of the obtained solitary wave solutions are provided, in correspondence to different values of the parameters used in the equations.
70

Fast parallel solution of heterogeneous 3D time-harmonic wave equations

Poulson, Jack Lesly 30 January 2013 (has links)
Several advancements related to the solution of 3D time-harmonic wave equations are presented, especially in the context of a parallel moving-PML sweeping preconditioner for problems without large-scale resonances. The main contribution of this dissertation is the introduction of an efficient parallel sweeping preconditioner and its subsequent application to several challenging velocity models. For instance, 3D seismic problems approaching a billion degrees of freedom have been solved in just a few minutes using several thousand processors. The setup and application costs of the sequential algorithm were also respectively refined to O(γ^2 N^(4/3)) and O(γ N log N), where N denotes the total number of degrees of freedom in the 3D volume and γ(ω) denotes the modestly frequency-dependent number of grid points per Perfectly Matched Layer discretization. Furthermore, high-performance parallel algorithms are proposed for performing multifrontal triangular solves with many right-hand sides, and a custom compression scheme is introduced which builds upon the translation invariance of free-space Green’s functions in order to justify the replacement of each dense matrix within a certain modified multifrontal method with the sum of a small number of Kronecker products. For the sake of reproducibility, every algorithm exercised within this dissertation is made available as part of the open source packages Clique and Parallel Sweeping Preconditioner (PSP). / text

Page generated in 0.0385 seconds