Spelling suggestions: "subject:"[een] X-RAY"" "subject:"[enn] X-RAY""
481 |
Quest for quiescent neutron star low mass X-ray binaries in the Small Magellanic CloudChowdhury, Md. Mizanul Huq 06 1900 (has links)
We present the first spectral search for neutron stars (NSs) in low-mass X-ray
binaries (LMXBs) between outbursts in the Small Magellanic Cloud (SMC).
We identify and discuss candidate LMXBs in quiescence in the SMC using
deep Chandra X-ray observations of two portions of the SMC. We produce
X-ray color-magnitude-diagrams of XRSs of these two fields and identify 10
candidates for quiescent NS LMXBs. Spectral fitting and searches for optical
counterparts rule out five, leaving five candidate quiescent NS LMXBs.
We estimate that we are sensitive to ~10% of quiescent NS LMXBs in our
fields. Our fields include 4.410^7 M of stellar mass, giving an upper limit of 10^{6} LMXBs per M in the SMC. We place a lower limit on the average duty cycle of NS LMXBs as ~0.003.
|
482 |
Density Functional Calculation of X-Ray Absorption Spectra within the Core Hole Approximation: An Implementation in NWChemCarlen, William Ben 01 August 2010 (has links)
Density functional theory is used to calculate the core excitation spectra of titanium structures. Specifically, the core-hole approximation is used. In this scenario, the excitation energies of core electrons are calculated using the approximation that the core energy level be frozen throughout the relaxation process of the orbitals. This allows a more acurate determination of the resulting X-ray spectra. The method described has been implemented in an NWChem module.
|
483 |
Developing & tailoring multi-functional carbon foams for multi-field responseSarzynski, Melanie Diane 15 May 2009 (has links)
As technological advances occur, many conventional materials are incapable of providing the unique multi-functional characteristics demanded thus driving an accelerated focus to create new material systems such as carbon and graphite foams. The improvement of their mechanical stiffness and strength, and tailoring of thermal and electrical conductivities are two areas of multi-functionality with active interest and investment by researchers. The present research focuses on developing models to facilitate and assess multi-functional carbon foams in an effort to expand knowledge. The foundation of the models relies on a unique approach to finite element meshing which captures the morphology of carbon foams. The developed models also include ligament anisotropy and coatings to provide comprehensive information to guide processing researchers in their pursuit of tailorable performance. Several illustrations are undertaken at multiple scales to explore the response of multi-functional carbon foams under coupled field environments providing valuable insight for design engineers in emerging technologies. The illustrations highlight the importance of individual moduli in the anisotropic stiffness matrix as well as the impact of common processing defects when tailoring the bulk stiffness. Furthermore, complete coating coverage and quality interface conditions are critical when utilizing copper to improve thermal and electrical conductivity of carbon foams.
|
484 |
Compact Liquid-Jet X-Ray SourcesHemberg, Oscar January 2004 (has links)
This thesis describes the development, characterization andoptimization of compact, high-brightness, liquid-jet-targetx-ray sources. Two different source types have been developedfor different wavelength regions and applications. A laser-plasma source for generating soft x-ray andextreme-ultraviolet radiation has been further developed forsoft x-ray microscopy and extreme-ultraviolet lithography. Thiswork focused on improved target stability, increased conversionefficiency and decreased debris production. For x-raymicroscopy applications using carbon-containingliquid-jetdroplet targets, the droplet stability has beeninvestigated and a method for source stabilization introduced.This source has also been optimized in terms of flux per debriswith respect to target material and size. Forextreme-ultraviolet lithography applications, aliquid-xenon-jet-target laser-plasma source system has beengreatly improved, especially in terms of stability andconversion efficiency. This source has also been characterizedin terms of, e.g., source size, angular distribution, andrepetition-rate capability. For extremeultraviolet lithography,the possible use of tin as a target material has also beenstudied and conversion efficiency and debris measurementsperformed. A new anode concept for electron-impact hard x-ray sourcesbased on high-speed liquidmetal jets has been introduced.Initial calculations show that this new target concept couldpotentially allow more than a hundred-fold increase in sourcebrightness compared to existing state-of-the-art technology. Alow-power, proof-of-principle, experiment has been performed,verifying the basic source concept. Scaling tohigh-poweroperation is discussed and appears plausible. A main obstaclefor high-power operation, the generation of a microscopichigh-speed jet in vacuum, is investigated usingdynamic-similarity experiments and shown to be feasible.Finally, initial medium-power experiments, approaching currentstate-of-the-art sources in terms of brightness, have beenperformed.
|
485 |
Electronic and nuclear dynamics of X-ray processesPrivalov, Timofei January 2001 (has links)
QC 20100628
|
486 |
Performance Studies and Star Tracking for PoGOLiteMarini Bettolo, Cecilia January 2010 (has links)
PoGOLite is a balloon-borne experiment, which will study polarized soft γ-ray emissionfrom astrophysical targets in the 25-80 keV energy range by applying well-typephoswich detector technology. Polarized γ-rays are expected from a wide variety of sources including rotation-powered pulsars, accreting black holes and neutron stars,and jet-dominated active galaxies. Polarization measurements provide a powerfulprobe of the γ-ray emission mechanism and the distribution of magnetic and radiation fields around the source. The polarization is determined using Compton scattering and photoelectric absorption in an array of 217 plastic scintillators. The sensitive detector is surrounded by a segmented Bismuth Germanium Oxide (BGO) anticoincidence shield. The function of this shield is to reduce backgrounds from charged cosmic rays, primary and atmospheric γ-rays, and atmospheric and instrumenta lneutrons. The anticoincidence shield consists of 427 BGO crystals with three different geometries. The characteristics of the BGO crystals of the bottom anticoincidence shield have been studied with particular focus on the light yield.The maiden flight of PoGOLite will be with a reduced detector volume “pathfinder” instrument. The flight, lasting about 24 hours, is foreseen from Esrange, Sweden in August 2010. The performance of the pathfinder has been studied using computer simulations. The effect of atmospheric attenuation, both on the signal of theastronomical target and on the background, are studied. These allow an observationstrategy to be developed for the forthcoming flight. A polarization analysis method is described and applied to an observation example. The method sets anupper limit on the accuracy with which the polarimeter will be able to detect polarization the angle and degree. The PoGOLite polarimeter has a relatively small field of view (2.4◦×2.4◦) which must be kept aligned to objects of interest on the sky. A star tracker forms part of the attitude control system. The star trackersystem comprises a CCD camera, a lens, and a baffle system. Preliminary studiesof the star identification performance are presented and are found to be compatible with the environment around the Crab, which is the main observational target for the first flight. / QC20100629
|
487 |
Wave packet theory of resonant X-ray scatteringSalek, Pawel January 2001 (has links)
QC 20100629
|
488 |
Transition Metal Hydride Complexes and Hydrogenated Gallium Clusters : Synthesis and Structural PropertiesFahlquist, Henrik January 2013 (has links)
Synthesis and structural characterisation of metal hydrides in two important systems are presented. The first system presented is low valent cobalt and nickel complex hydrides with the compositions BaMg5Co2H10, RbMg5CoNiH10, SrMg2CoH7and Sr4Mg4Co3H19 featuring nickel with oxidation state of 0 and cobalt with oxidation state +I and -I. The second system presented is polyanionic gallium complex hydrides with the compositions RbGaH2, RbxK(1−x)GaH2 (0.5≤x≤1), CsxRb(8−x)Ga5H15 (0≤x≤8) and Cs10Ga9H25 featuring novel hydrogenous polyanionic gallium hydride clusters mimicking common hydrocarbons. The syntheses of the compounds were performed at elevated temperatures and at moderate hydrogen pressures (50-100 bar). The structural investigations were mainly done by X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). The metal-hydrogen bond was investigated by vibrational spectroscopy using Fourier Transform IR-spectroscopy (FTIR) and Inelastic Neutron Scattering (INS).By subtle changes in the compositions of the hydrides it was possible to induce major changes in band gaps, oxidation states and structures. / <p>At the time for the doctoral defence the following papers were unpublished and had a status as follows: Paper 1: Manuscript; Paper 2: Accepted; Paper 5: Manuscript</p>
|
489 |
Residual Stresses In Circular Thin Plates Using Two Dimensional X-ray Diffraction And Finite Element AnalysisAlusail, Mohammed January 2013 (has links)
There are many causes of structural failure. One of the most important factors leading to
material failure is residual stress. This stress represents effects left in structures after
processing or removal of external loads including changes in shape and crystallite size. In
aggregate, residual stress changes the mechanical behaviour of materials. Various
measurement techniques encompassing destructive, semi destructive, and non-destructive
testing can be used to measure residual stresses.
Thin plates are common in engineering applications. This thesis analyzes residual stresses on
circular AISI 1020 steel alloy plates after removal of external loads using two-dimensional
X-ray diffraction. Two identical thin circular plates are used in this experiment; one of which
is statically loaded. The other plate is used as a control specimen. Residual stresses in the
plates are measured using two-dimensional X-ray diffraction and the measurements are
compared to those obtained using finite element analysis. It was found that experimentally
measured residual stress occurred due to manufacture processing. Also, modules A and B
showed the external effect of applying not enough to reach the plastic region to deform
specimen 2 and obtain residual stress results distribution.
|
490 |
Investigation of charge collection in a CdTe-Timepix detectorKrapohl, David, Fröjdh, Christer, Fröjdh, Erik, Maneuski, D, Nilsson, Hans-Erik January 2013 (has links)
Energy calibration of CdTe detectors is usually done using known reference sources disregarding the exact amount of charge that is collected in the pixels. However, to compare detector and detector model the quantity of charge collected is needed. We characterize the charge collection in a CdTe detector comparing test pulses, measured data and an improved TCAD simulation model [1]. The 1 mm thick detector is bump-bonded to a TIMEPIX chip and operating in Time-over-Threshold (ToT) mode. The resistivity in the simulation was adjusted to match the detector properties setting a deep intrinsic donor level [2]. This way it is possible to adjust properties like trap concentration, electron/hole lifetime and mobility in the simulation characterizing the detector close to measured data cite [3].
|
Page generated in 0.0436 seconds