• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] USE OF DEEP CONVOLUTIONAL NEURAL NETWORKS IN AUTOMATIC RECOGNITION AND CLASSIFICATION OF COAL MACERALS / [pt] USO DE REDES NEURAIS CONVOLUCIONAIS PROFUNDAS PARA RECONHECIMENTO E CLASSIFICAÇÃO AUTOMÁTICAS DE MACERAIS DE CARVÃO

RICHARD BRYAN MAGALHAES SANTOS 09 November 2022 (has links)
[pt] Diferentemente de muitas outras rochas, o carvão é uma rocha sedimentar composta principalmente de matéria orgânica derivada de detritos vegetais, acumulados em turfeiras em diferentes períodos geológicos. O carvão é um recurso econômico essencial em muitos países, tendo sido a principal força motriz por trás da revolução industrial. O carvão é amplamente utilizado industrialmente para diversos fins: carbonização e produção de coque, produção de ferro/aço, carvão térmico para gerar eletricidade, liquefação e gaseificação. A utilização do carvão é ditada pelas suas propriedades que são geralmente classificadas como sua composição, rank e grau. A composição do carvão, em termos dos seus macerais, e a sua classificação são determinadas manualmente por um petrógrafo, devido à sua natureza complexa. Este estudo almejou desenvolver um método automático baseado na aprendizagem de máquina para segmentação automática de macerais a nível de grupo e um módulo para determinação de rank por refletância em imagens petrográficas do carvão que pode melhorar a eficiência deste processo e diminuir a subjetividade do operador. foi desenvolvida uma abordagem de aprendizagem profunda da arquitetura baseada na Mask R-CNN para identificar e segmentar o grupo de maceral vitrinite, o qual é fundamental para a análise do rank, uma vez que a classificação é determinada pela reflectância da collotelinite (maceral desse grupo). Em segundo lugar, foi desenvolvido um método de processamento de imagem para analisar as imagens segmentadas de vitrinite e determinar a classificação do carvão, associando os valores cinzentos à reflectância. Para a segmentação de maceral, foram utilizadas cinco amostras para treinar a rede, 174 imagens foram utilizadas para treino, e 86 foram utilizadas para validação, com os melhores resultados obtidos para os modelos de vitrinite, inertinita, liptinita e colotelinita (89,23%, 68,81%, 37,00% e 84,77% F1-score, respectivamente). Essas amostras foram utilizadas juntamente com outras oito amostras para determinar os resultados de classificação utilizando a reflectância de collotelinite. As amostras variaram entre 0,97% e 1,8% de reflectância. Este método deverá ajudar a poupar tempo e mão-de-obra para análise, se implementado num modelo de produção. O desvio médio quadrático entre o método proposto e os valores de reflectância de referência foi de 0,0978. / [en] Unlike most other rocks, coal is a sedimentary rock composed primarily of organic matter derived from plant debris that accumulated in peat mires during different geological periods. Coal is also an essential economic resource in many countries, having been the main driving force behind the industrial revolution. Coal is still widely used industrially for many different purposes: carbonization and coke production, iron/steel making, thermal coal to generate electricity, liquefaction, and gasification. The utility of the coal is dictated by its properties which are commonly referred to as its rank, type, and grade. Coal composition, in terms of its macerals, and its rank determination are determined manually by a petrographer due to its complex nature. This study aimed to develop an automatic method based on machine learning capable of maceral segmentation at group level followed by a module for rank reflectance determination on petrographic images of coal that can improve the efficiency of this process and decrease operator subjectivity. Firstly, a Mask R-CNN-based architecture deep learning approach was developed to identify and segment the vitrinite maceral group, which is fundamental for rank analysis, as rank is determined by collotelinite reflectance (one of its individual macerals). Secondly, an image processing method was developed to analyze the vitrinite segmented images and determine coal rank by associating the grey values with the reflectance. For the maceral (group) segmentation, five samples were used to train the network, 174 images were used for training, and 86 were used for testing, with the best results obtained for the vitrinite, inertinite, liptinite, and collotelinite models (89.23%, 68.81%, 37.00% and 84.77% F1-score, respectively). Those samples were used alongside another eight samples to determine the rank results utilizing collotelinite reflectance. The samples ranged from 0.97% to 1.8% reflectance. This method should help save time and labor for analysis if implemented into a production model. The root mean square calculated between the proposed method and the reference reflectance values was 0.0978.

Page generated in 0.0446 seconds