1 |
[pt] ANOTAÇÃO PROFUNDA DE PAPÉIS SEMÂNTICOS PARA O PORTUGUÊS / [en] DEEP SEMANTIC ROLE LABELING FOR PORTUGUESEGUILHERME SANT ANNA VARELA 06 August 2019 (has links)
[pt] Vivemos em um mundo complexo, no qual incontáveis fatores aparentemente desconexos – tais como a lei de Moore que dita um aumento exponencial da capacidade de processamento em um chip de silício, a queda do custo de espaço de armazenamento e a adoção em massa de smartphones colaboram para a formação de uma sociedade progressivamente interdependente. Todos os dias são criados 2,5 quintilhões de bytes de dados, de fato 90 por cento dos dados no mundo foram criados nos últimos dois anos. Domar os padrões salientes aos dados separando informação do caos torna-se uma necessidade iminente para a tomada de decisão dos indivíduos e para sobrevivência de organizações. Nesse cenário a melhor resposta dos pesquisadores de Processamento de Linguagem Natural encontra-se na tarefa de Anotação de Papéis
Semânticos. APS é a tarefa que tem o audacioso objetivo de compreender eventos, buscando determinar Quem fez o que e aonde, Quais foram os beneficiados? ou Qual o meio utilizado para atingir os fins. APS serve como tarefa intermediária para várias aplicações de alto nível e.g information extraction, question and answering e agentes conversacionais. Tradicionalmente, resultados satisfatórios eram obtidos apenas com alta dependência de conhecimento específico de domínio. Para o português, através desta abordagem,
o sistema estado da arte da tarefa para é de 79,6 por cento de pontuação F1. Sistemas mais recentes dependem de uma série de subtarefas, obtém 58 por cento de pontuação F1. Nessa dissertação, exploramos um novo paradigma utilizando redes neurais recorrentes, para o idioma do português do Brasil,
e sem subtarefas intermediárias obtendo uma pontuação de 66,23. / [en] We live in a complex world in which a myriad of seemingly unrelated factors – such as Moore s law which states that the processing capacity on a silicon wafer should increase exponentially, the fall of storage costs and mass adoption of smart-phones contribute to the formation of an increasingly inter-dependent society: 2.5 quintillion bytes of data are generated every day, in fact ninety percent of the world s data were created in the last few years. Harnessing the emerging patterns within the data, effectively separating information from chaos is crucial for both individual decision making as well as for the survival of organizations. In this scenario the best answer from Natural Language Processing researchers is the task
of Semantic Role Labeling. SRL is the task the concerns itself with the audacious goal of event understanding, which means determining Who did what to whom, Who was the beneficiary? or What were the means to achieve some goal. APS is also an intermediary task to high level applications such as information extraction, question and answering and chatbots. Traditionally, satisfactory results were obtained only by the introduction of highly specific domain knowledge. For Portuguese, this approach is able to yields a F1 score of 79.6 percent. Recent systems, rely on a pipeline of sub-tasks, yielding a F1 score of 58 percent. In this dissertation, we adopt a new paradigm using recurrent neural networks for the Brazilian Portuguese, that does not rely on a pipeline, our system obtains a score of 66.23 percent.
|
2 |
[en] SEMANTIC ROLE-LABELING FOR PORTUGUESE / [pt] ANOTADOR DE PAPEIS SEMÂNTICOS PARA PORTUGUÊSARTHUR BELTRAO CASTILHO NETO 23 June 2017 (has links)
[pt] A anotação de papeis semânticos (APS) é uma importante tarefa do processamento de linguagem natural (PLN), que possibilita estabelecer uma relação de significado entre os eventos descritos em uma sentença e seus participantes. Dessa forma, tem o potencial de melhorar o desempenho de inúmeros outros sistemas, tais como: tradução automática, correção ortográfica, extração e recuperação de informações e sistemas de perguntas e respostas, uma vez que reduz as ambiguidades existentes no texto de entrada. A grande maioria dos sistemas de APS publicados no mundo realiza a tarefa empregando técnicas de aprendizado supervisionado e, para obter melhores resultados, usam corpora manualmente revisados de tamanho considerável. No caso do Brasil, o recurso lexical que possui anotações semânticas (Propbank.br) é muito menor. Por isso, nos últimos anos, foram feitas tentativas de melhorar esse resultado utilizando técnicas de aprendizado semisupervisionado ou não-supervisionado. Embora esses trabalhos tenham contribuido direta e indiretamente para a área de PLN, não foram capazes de superar o desempenho dos sistemas puramente supervisionados. Este trabalho apresenta uma abordagem ao problema de anotação de papéis semânticos no idioma português. Utilizamos aprendizado supervisionado sobre um conjunto de 114 atributos categóricos e empregando duas técnicas de regularização de domínio, combinadas para reduzir o número de atributos binários em 96 por cento. O modelo gerado usa uma support vector machine com solver L2-loss dual support vector classification e é testado na base PropBank.br, apresentando desempenho ligeiramente superior ao estado-da-arte. O sistema é avaliado empiricamente pelo script oficial da CoNLL 2005 Shared Task, obtendo 82,17 por cento de precisão, 82,88 por cento de cobertura e 82,52 por cento de F1 ao passo que o estado-da-arte anterior atinge 83,0 por cento de precisão, 81,7 por cento de cobertura e 82,3 por cento de F1. / [en] Semantic role-labeling (SRL) is an important task of natural language processing (NLP) which allows establishing meaningful relationships between events described in a given sentence and its participants. Therefore, it can potentially improve performance on a large number of NLP systems such as automatic translation, spell correction, information extraction and retrieval and question answering, as it decreases ambiguity in the input text. The vast majority of SRL systems reported so far employed supervised learning techniques to perform the task. For better results, large sized manually reviewed corpora are used. The Brazilian semantic role labeled lexical resource (Propbank.br) is much smaller. Hence, in recent years, attempts have been made to improve performance using semi supervised and unsupervised learning. Even making several direct and indirect contributions to NLP, those studies were not able to outperform exclusively supervised systems. This paper presents an approach to the SRL task in Portuguese language using supervised learning over a set of 114 categorical features. Over those, we apply a combination of two domain regularization methods to cut binary features down to 96 percent. We test a SVM model (L2-loss dual support vector classification) on PropBank.Br dataset achieving results slightly better than state-of-the-art. We empirically evaluate the system using official CoNLL 2005 Shared Task script pulling 82.17 percent precision, 82.88 percent coverage and 82.52 percent F1. The previous state-of-the-art Portuguese SRL system scores 83.0 percent precision, 81.7 percent coverage and 82.3 percent F1.
|
Page generated in 0.0257 seconds