• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] POROSITY ESTIMATION FROM SEISMIC ATTRIBUTES WITH SIMULTANEOUS CLASSIFICATION OF SPATIALLY STRUCTURED LATENT FACIES / [pt] PREDIÇÃO DE POROSIDADE A PARTIR DE ATRIBUTOS SÍSMICOS COM CLASSIFICAÇÃO SIMULTÂNEA DE FACIES GEOLÓGICAS LATENTES EM ESTRUTURAS ESPACIAIS

LUIZ ALBERTO BARBOSA DE LIMA 26 April 2018 (has links)
[pt] Predição de porosidade em reservatórios de óleo e gás representa em uma tarefa crucial e desafiadora na indústria de petróleo. Neste trabalho é proposto um novo modelo não-linear para predição de porosidade que trata fácies sedimentares como variáveis ocultas ou latentes. Esse modelo, denominado Transductive Conditional Random Field Regression (TCRFR), combina com sucesso os conceitos de Markov random fields, ridge regression e aprendizado transdutivo. O modelo utiliza volumes de impedância sísmica como informação de entrada condicionada aos valores de porosidade disponíveis nos poços existentes no reservatório e realiza de forma simultânea e automática a classificação das fácies e a estimativa de porosidade em todo o volume. O método é capaz de inferir as fácies latentes através da combinação de amostras precisas de porosidade local presentes nos poços com dados de impedância sísmica ruidosos, porém disponíveis em todo o volume do reservatório. A informação precisa de porosidade é propagada no volume através de modelos probabilísticos baseados em grafos, utilizando conditional random fields. Adicionalmente, duas novas técnicas são introduzidas como etapas de pré-processamento para aplicação do método TCRFR nos casos extremos em que somente um número bastante reduzido de amostras rotuladas de porosidade encontra-se disponível em um pequeno conjunto de poços exploratórios, uma situação típica para geólogos durante a fase exploratória de uma nova área. São realizados experimentos utilizando dados de um reservatório sintético e de um reservatório real. Os resultados comprovam que o método apresenta um desempenho consideravelmente superior a outros métodos automáticos de predição em relação aos dados sintéticos e, em relação aos dados reais, um desempenho comparável ao gerado por técnicas tradicionais de geo estatística que demandam grande esforço manual por parte de especialistas. / [en] Estimating porosity in oil and gas reservoirs is a crucial and challenging task in the oil industry. A novel nonlinear model for porosity estimation is proposed, which handles sedimentary facies as latent variables. It successfully combines the concepts of conditional random fields (CRFs), transductive learning and ridge regression. The proposed Transductive Conditional Random Field Regression (TCRFR) uses seismic impedance volumes as input information, conditioned on the porosity values from the available wells in the reservoir, and simultaneously and automatically provides as output the porosity estimation and facies classification in the whole volume. The method is able to infer the latent facies states by combining the local, labeled and accurate porosity information available at well locations with the plentiful but imprecise impedance information available everywhere in the reservoir volume. That accurate information is propagated in the reservoir based on conditional random field probabilistic graphical models, greatly reducing uncertainty. In addition, two new techniques are introduced as preprocessing steps for the application of TCRFR in the extreme but realistic cases where just a scarce amount of porosity labeled samples are available in a few exploratory wells, a typical situation for geologists during the evaluation of a reservoir in the exploration phase. Both synthetic and real-world data experiments are presented to prove the usefulness of the proposed methodology, which show that it outperforms previous automatic estimation methods on synthetic data and provides a comparable result to the traditional manual labored geostatistics approach on real-world data.
2

[en] HEURISTICS FOR DATA POINT SELECTION FOR LABELING IN SEMI-SUPERVISED AND ACTIVE LEARNING CONTEXTS / [pt] HEURÍSTICAS PARA SELEÇÃO DE PONTOS PARA SEREM ANOTADOS NO CONTEXTO DEAPRENDIZADO SEMI- SUPERVISIONADO E ATIVO

SONIA FIOL GONZALEZ 16 September 2021 (has links)
[pt] O aprendizado supervisionado é, hoje, o ramo do aprendizado de máquina central para a maioria das inovações nos negócios. A abordagem depende de ter grandes quantidades de dados rotulados, suficiente para ajustar funções com a precisão necessária. No entanto, pode ser caro obter dados rotulados ou criar os rótulos através de um processo de anotação. O aprendizado semisupervisionado (SSL) é usado para rotular com precisão os dados a partir de pequenas quantidades de dados rotulados utilizando técnicas de aprendizado não supervisionado. Uma técnica de rotulagem é a propagação de rótulos. Neste trabalho, usamos especificamente o algoritmo Consensus rate-based label propagation (CRLP). Este algoritmo depende do uma função de consenso para a propagação. Uma possível função de consenso é a matriz de co-associação que estima a probabilidade dos pontos i e j pertencem ao mesmo grupo. Neste trabalho, observamos que a matriz de co-associação contém informações valiosas para tratar esse tipo de problema. Quando nenhum dado está rotulado, é comum escolher aleatoriamente, com probabilidade uniforme, os dados a serem rotulados manualmente, a partir dos quais a propagação procede. Este trabalho aborda o problema de seleção de um conjunto de tamanho fixo de dados para serem rotulados manualmente que propiciem uma melhor precisão no algoritmo de propagação de rótulos. Três técnicas de seleção, baseadas em princípios de amostragem estocástica, são propostas: Stratified Sampling (SS), Probability (P), and Stratified Sampling - Probability (SSP). Eles são todos baseados nas informações embutidas na matriz de co-associação. Os experimentos foram realizados em 15 conjuntos de benchmarks e mostraram resultados muito interessantes. Não só, porque eles fornecem uma seleção mais equilibrada quando comparados a uma seleção aleatória, mas também melhoram os resultados de precisão na propagação de rótulos. Em outro contexto, essas estratégias também foram testadas dentro de um processo de aprendizagem ativa, obtendo também bons resultados. / [en] Supervised learning is, today, the branch of Machine Learning central to most business disruption. The approach relies on having amounts of labeled data large enough to learn functions with the required approximation. However, labeled data may be expensive, to obtain or to construct through a labeling process. Semi-supervised learning (SSL) strives to label accurately data from small amounts of labeled data and the use of unsupervised learning techniques. One labeling technique is label propagation. We use specifically the Consensus rate-based label propagation (CRLP) in this work. A consensus function is central to the propagation. A possible consensus function is a coassociation matrix that estimates the probability of data points i and j belong to the same group. In this work, we observe that the co-association matrix has valuable information embedded in it. When no data is labeled, it is common to choose with a uniform probability randomly, the data to manually label, from which the propagation proceeds. This work addresses the problem of selecting a fixed-size set of data points to label (manually), to improve the label propagation algorithm s accuracy. Three selection techniques, based on stochastic sampling principles, are proposed: Stratified Sampling (SP), Probability (P), and Stratified Sampling - Probability (SSP). They are all based on the information embedded in the co-association matrix. Experiments were carried out on 15 benchmark sets and showed exciting results. Not only because they provide a more balanced selection when compared to a uniform random selection, but also improved the accuracy results of a label propagation method. These strategies were also tested inside an active learning process in a different context, also achieving good results.
3

[pt] APRENDIZADO SEMI E AUTO-SUPERVISIONADO APLICADO À CLASSIFICAÇÃO MULTI-LABEL DE IMAGENS DE INSPEÇÕES SUBMARINAS / [en] SEMI AND SELF-SUPERVISED LEARNING APPLIED TO THE MULTI-LABEL CLASSIFICATION OF UNDERWATER INSPECTION IMAGE

AMANDA LUCAS PEREIRA 11 July 2023 (has links)
[pt] O segmento offshore de produção de petróleo é o principal produtor nacional desse insumo. Nesse contexto, inspeções submarinas são cruciais para a manutenção preventiva dos equipamentos, que permanecem toda a vida útil em ambiente oceânico. A partir dos dados de imagem e sensor coletados nessas inspeções, especialistas são capazes de prevenir e reparar eventuais danos. Tal processo é profundamente complexo, demorado e custoso, já que profissionais especializados têm que assistir a horas de vídeos atentos a detalhes. Neste cenário, o presente trabalho explora o uso de modelos de classificação de imagens projetados para auxiliar os especialistas a encontrarem o(s) evento(s) de interesse nos vídeos de inspeções submarinas. Esses modelos podem ser embarcados no ROV ou na plataforma para realizar inferência em tempo real, o que pode acelerar o ROV, diminuindo o tempo de inspeção e gerando uma grande redução nos custos de inspeção. No entanto, existem alguns desafios inerentes ao problema de classificação de imagens de inspeção submarina, tais como: dados rotulados balanceados são caros e escassos; presença de ruído entre os dados; alta variância intraclasse; e características físicas da água que geram certas especificidades nas imagens capturadas. Portanto, modelos supervisionados tradicionais podem não ser capazes de cumprir a tarefa. Motivado por esses desafios, busca-se solucionar o problema de classificação de imagens submarinas a partir da utilização de modelos que requerem menos supervisão durante o seu treinamento. Neste trabalho, são explorados os métodos DINO (Self-DIstillation with NO labels, auto-supervisionado) e uma nova versão multi-label proposta para o PAWS (Predicting View Assignments With Support Samples, semi-supervisionado), que chamamos de mPAWS (multi-label PAWS). Os modelos são avaliados com base em sua performance como extratores de features para o treinamento de um classificador simples, formado por uma camada densa. Nos experimentos realizados, para uma mesma arquitetura, se obteve uma performance que supera em 2.7 por cento o f1-score do equivalente supervisionado. / [en] The offshore oil production segment is the main national producer of this input. In this context, underwater inspections are crucial for the preventive maintenance of equipment, which remains in the ocean environment for its entire useful life. From the image and sensor data collected in these inspections,experts are able to prevent and repair damage. Such a process is deeply complex, time-consuming and costly, as specialized professionals have to watch hours of videos attentive to details. In this scenario, the present work explores the use of image classification models designed to help experts to find the event(s) of interest in under water inspection videos. These models can be embedded in the ROV or on the platform to perform real-time inference,which can speed up the ROV, monitor notification time, and greatly reduce verification costs. However, there are some challenges inherent to the problem of classification of images of armored submarines, such as: balanced labeled data are expensive and scarce; the presence of noise among the data; high intraclass variance; and some physical characteristics of the water that achieved certain specificities in the captured images. Therefore, traditional supervised models may not be able to fulfill the task. Motivated by these challenges, we seek to solve the underwater image classification problem using models that require less supervision during their training. In this work, they are explorers of the DINO methods (Self-Distillation with NO labels, self-supervised) anda new multi-label version proposed for PAWS (Predicting View AssignmentsWith Support Samples, semi-supervised), which we propose as mPAWS (multi-label PAWS). The models are evaluated based on their performance as features extractors for training a simple classifier, formed by a dense layer. In the experiments carried out, for the same architecture, a performance was obtained that exceeds by 2.7 percent the f1-score of the supervised equivalent.
4

[en] PREDICTING DRUG SENSITIVITY OF CANCER CELLS BASED ON GENOMIC DATA / [pt] PREVENDO A EFICÁCIA DE DROGAS A PARTIR DE CÉLULAS CANCEROSAS BASEADO EM DADOS GENÔMICOS

SOFIA PONTES DE MIRANDA 22 April 2021 (has links)
[pt] Prever com precisão a resposta a drogas para uma dada amostra baseado em características moleculares pode ajudar a otimizar o desenvolvimento de drogas e explicar mecanismos por trás das respostas aos tratamentos. Nessa dissertação, dois estudos de caso foram gerados, cada um aplicando diferentes dados genômicos para a previsão de resposta a drogas. O estudo de caso 1 avaliou dados de perfis de metilação de DNA como um tipo de característica molecular que se sabe ser responsável por causar tumorigênese e modular a resposta a tratamentos. Usando perfis de metilação de 987 linhagens celulares do genoma completo na base de dados Genomics of Drug Sensitivity in Cancer (GDSC), utilizamos algoritmos de aprendizado de máquina para avaliar o potencial preditivo de respostas citotóxicas para oito drogas contra o câncer. Nós comparamos a performance de cinco algoritmos de classificação e quatro algoritmos de regressão representando metodologias diversas, incluindo abordagens tree-, probability-, kernel-, ensemble- e distance-based. Aplicando sub-amostragem artificial em graus variados, essa pesquisa procura avaliar se o treinamento baseado em resultados relativamente extremos geraria melhoria no desempenho. Ao utilizar algoritmos de classificação e de regressão para prever respostas discretas ou contínuas, respectivamente, nós observamos consistentemente excelente desempenho na predição quando os conjuntos de treinamento e teste consistiam em dados de linhagens celulares. Algoritmos de classificação apresentaram melhor desempenho quando nós treinamos os modelos utilizando linhagens celulares com valores de resposta a drogas relativamente extremos, obtendo valores de area-under-the-receiver-operating-characteristic-curve de até 0,97. Os algoritmos de regressão tiveram melhor desempenho quando treinamos os modelos utilizado o intervalo completo de valores de resposta às drogas, apesar da dependência das métricas de desempenho utilizadas. O estudo de caso 2 avaliou dados de RNA-seq, dados estes comumente utilizados no estudo da eficácia de drogas. Aplicando uma abordagem de aprendizado semi-supervisionado, essa pesquisa busca avaliar o impacto da combinação de dados rotulados e não-rotulados para melhorar a predição do modelo. Usando dados rotulados de RNA-seq do genoma completo de uma média de 125 amostras de tumor AML rotuladas da base de dados Beat AML (separados por tipos de droga) e 151 amostras de tumor AML não-rotuladas na base de dados The Cancer Genome Atlas (TCGA), utilizamos uma estrutura de modelo semi-supervisionado para prever respostas citotóxicas para quatro drogas contra câncer. Modelos semi-supervisionados foram gerados, avaliando várias combinações de parâmetros e foram comparados com os algoritmos supervisionados de classificação. / [en] Accurately predicting drug responses for a given sample based on molecular features may help to optimize drug-development pipelines and explain mechanisms behind treatment responses. In this dissertation, two case studies were generated, each applying different genomic data to predict drug response. Case study 1 evaluated DNA methylation profile data as one type of molecular feature that is known to drive tumorigenesis and modulate treatment responses. Using genome-wide, DNA methylation profiles from 987 cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC) database, we used machine-learning algorithms to evaluate the potential to predict cytotoxic responses for eight anti-cancer drugs. We compared the performance of five classification algorithms and four regression algorithms representing diverse methodologies, including tree-, probability-, kernel-, ensemble- and distance-based approaches. By applying artificial subsampling in varying degrees, this research aims to understand whether training based on relatively extreme outcomes would yield improved performance. When using classification or regression algorithms to predict discrete or continuous responses, respectively, we consistently observed excellent predictive performance when the training and test sets consisted of cell-line data. Classification algorithms performed best when we trained the models using cell lines with relatively extreme drug-response values, attaining area-under-the-receiver-operating-characteristic-curve values as high as 0.97. The regression algorithms performed best when we trained the models using the full range of drug-response values, although this depended on the performance metrics we used. Case study 2 evaluated RNA-seq data as one of the most popular molecular data used to study drug efficacy. By applying a semi-supervised learning approach, this research aimed to understand the impact of combining labeled and unlabeled data to improve model prediction. Using genome-wide RNA-seq labeled data from an average of 125 AML tumor samples in the Beat AML database (varying by drug type) and 151 unlabeled AML tumor samples in The Cancer Genome Atlas (TCGA) database, we used a semi-supervised model structure to predict cytotoxic responses for four anti-cancer drugs. Semi-supervised models were generated, while assessing several parameter combinations and were compared against supervised classification algorithms.

Page generated in 0.05 seconds