• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] AN AGENT-BASED SOFTWARE FRAMEWORK FOR MACHINE LEARNING TUNING / [pt] UM FRAMEWORK BASEADO EM AGENTES PARA A CALIBRAGEM DE MODELOS DE APRENDIZADO DE MÁQUINA

JEFRY SASTRE PEREZ 23 November 2018 (has links)
[pt] Hoje em dia, a enorme quantidade de dados disponíveis online apresenta um novo desafio para os processos de descoberta de conhecimento. As abordagens mais utilizadas para enfrentar esse desafio são baseadas em técnicas de aprendizado de máquina. Apesar de serem muito poderosas, essas técnicas exigem que seus parâmetros sejam calibrados para gerar modelos com melhor qualidade. Esses processos de calibração são demorados e dependem das habilidades dos especialistas da área de aprendizado de máquinas. Neste contexto, esta pesquisa apresenta uma estrutura baseada em agentes de software para automatizar a calibração de modelos de aprendizagem de máquinas. Esta abordagem integra conceitos de Engenharia de Software Orientada a Agentes (AOSE) e Aprendizado de Máquinas (ML). Como prova de conceito, foi utilizado o conjunto de dados Iris para mostrar como nossa abordagem melhora a qualidade dos novos modelos gerados por nosso framework. Além disso, o framework foi instanciado para um dataset de imagens médicas e finalmente foi feito um experimento usando o dataset Grid Sector. / [en] Nowadays, the challenge of knowledge discovery is to mine massive amounts of data available online. The most widely used approaches to tackle that challenge are based on machine learning techniques. In spite of being very powerful, those techniques require their parameters to be calibrated in order to generate models with better quality. Such calibration processes are time-consuming and rely on the skills of machine learning experts. Within this context, this research presents a framework based on software agents for automating the calibration of machine learning models. This approach integrates concepts from Agent Oriented Software Engineering (AOSE) and Machine Learning (ML). As a proof of concept, we first train a model for the Iris dataset and then we show how our approach improves the quality of new models generated by our framework. Then, we create instances of the framework to generate models for a medical images dataset and finally we use the Grid Sector dataset for a final experiment.

Page generated in 0.0315 seconds