1 |
[en] NEW TECHNIQUES OF PATTERN CLASSIFICATION BASED ON LOCAL-GLOBAL METHODS / [pt] NOVAS TÉCNICAS DE CLASSIFICAÇÃO DE PADRÕES BASEADAS EM MÉTODOS LOCAL-GLOBALRODRIGO TOSTA PERES 13 January 2009 (has links)
[pt] O foco desta tese está direcionado a problemas de
Classificação de Padrões. A proposta central é desenvolver
e testar alguns novos algoritmos para
ambientes supervisionados, utilizando um enfoque local-
global. As principais contribuições são: (i)
Desenvolvimento de método baseado em quantização
vetorial com posterior classificação supervisionada local.
O objetivo é resolver o problema de classificação estimando
as probabilidades posteriores em regiões
próximas à fronteira de decisão; (ii) Proposta do que
denominamos Zona de Risco Generalizada, um método
independente de modelo, para encontrar as observações
vizinhas à fronteira de decisão; (iii) Proposta de método
que denominamos Quantizador Vetorial das Fronteiras de
Decisão, um método de classificação que utiliza protótipos,
cujo objetivo é construir uma aproximação quantizada das
regiões vizinhas à fronteira de decisão. Todos os métodos
propostos foram testados em bancos de dados, alguns
sintéticos e outros publicamente disponíveis. / [en] This thesis is focused on Pattern Classification problems.
The objective is to develop and test new supervised
algorithms with a local-global approach. The main
contributions are: (i) A method based on vector
quantization with posterior supervised local
classification. The classification problem is solved by the
estimation of the posterior probabilities near the decision
boundary; (ii) Propose of what we call Zona de Risco
Generalizada, an independent model method to find
observations near the decision boundary; (iii) Propose of
what we call Quantizador Vetorial das Fronteiras de
Decisão, a classification method based on prototypes that
build a quantized approximation of the decision boundary.
All methods were tested in synthetics or real datasets.
|
2 |
[es] COMBINACIÓN DE REDES NEURALES MLP EN PROBLEMAS DE CLASIFICACIÓN / [pt] COMBINAÇÃO DE REDES NEURAIS MLP EM PROBLEMAS DE CLASSIFICAÇÃO / [en] COMBINING MLP NEURAL NETS FOR CLASSIFICATION28 August 2001 (has links)
[pt] Esta dissertação investigou a criação de comitês de
classificadores baseados em Redes Neurais Multilayer
Perceptron (Redes MLP, abreviadamente). Isso foi feito em
dois passos: primeiro, aplicando-se procedimentos para
criação de redes complementares, i.e, redes individualmente
eficazes mas que cometem erros distintos; segundo, testando-
se sobre essas redes alguns dos principais métodos de
combinação disponíveis. Dentre os procedimentos para
criação de redes complementares, foi dado enfoque para os
baseados em alteração do conjunto de treinamento. Os
métodos Bootstrap e Arc-x4 foram escolhidos para serem
utilizados no estudo de casos, juntamente com o método RDP
(Replicação Dirigida de Padrões). No que diz respeito aos
métodos de combinação disponíveis, foi dada particular
atenção ao método de combinação por integrais nebulosas.
Além deste método, implementou-se combinação por média,
votação por pluralidade e Borda count. As aplicações
escolhidas para teste envolveram duas vertentes importantes
na área de visão computacional - Classificação de
Coberturas de Solo por Imagens de Satélite e Reconhecimento
de Expressões Faciais. Embora ambas pertençam à mesma área
de conhecimento, foram escolhidas de modo a representar
níveis de dificuldade diferentes como tarefas de
classificação - enquanto a primeira contou com um grande
número de padrões disponíveis, a segunda foi
comparativamente limitada nesse sentido. Como resultado
final, comprovou-se a viabilidade da utilização de comitês
em problemas de classificação, mesmo com as possíveis
variações de desempenho relacionadas com a complexidade
desses problemas. O método de combinação baseado em
integrais nebulosas mostrou-se particularmente eficiente
quando associado ao procedimento RDP para formação das redes
comissionadas, mas nem sempre foi satisfatório. Considerado
individualmente, o RDP tem a limitação de criar, no máximo,
tantas redes quanto forem as classes consideradas em um
problema; porém, quando este número de redes foi
considerado como base de comparação, o RDP se mostrou,
na média de todos os métodos de combinação testados, mais
eficaz que os procedimentos Bootstrap e Arc-x4. Por outro
lado, tanto o Bootstrap quanto o Arc-x4 têm a importante
vantagem de permitirem a formação de um número crescente de
membros, o que quase sempre acarretou em melhorias de
desempenho global em relação ao RDP. / [en] The present dissertation investigated the creation of
classifier committees based on Multilayer Perceptron Neural
Networks (MLP Networks, for short). This was done in two
parts: first, by applying procedures for creating
complementary networks, i.e., networks that are individually
accurate but cause distinct misclassifications; second, by
assessing different combining methods to these network`s
outputs. Among the procedures for creating committees
members, the main focus was set to the ones based on
changes to the training set . Bootstrap and Arc-x4 were
chosen to be used at the experiments, along with the RDP
procedure (translated as Driven Pattern Replication). With
respect to the available combining methods, special
attention was paid to fuzzy integrals combination. Average
combination, plurality voting and Borda count were also
implemented. The chosen experimental applications included
interesting branches from computer vision: Land Cover
Classification from Satellite Images and Facial Expression
Recognition. These applications were specially interesting,
in the sense they represent two different levels of
difficulty as classification tasks - while the first had a
great number of available patterns, the second was
comparatively limited in this way. This work proved the
viability of using committees in classification problems,
despite the small performance fluctuations related to these
problems complexity. The fuzzy integrals method has shown
to be particularly interesting when coupled with the RDP
procedure for committee creation, but was not always
satisfactory. Taken alone, the RDP has the limitation of
creating, at most, as many networks as there are classes to
be considered at the problem at hand; however, when
this number of networks was considered as the basis for
comparison, this procedure outperformed, taking into
account average combining results, both Bootstrap and Arc-
x4. On the other hand, these later procedures have the
important advantage of allowing the creation of an
increasing number of committee members, what almost always
increased global performance in comparison to RDP. / [es] Esta disertación investigó la creación de comités de
clasificadores basados en Redes Neurales Multilayer
Perceptron (Redes MLP, abreviadamente). Esto fue ejecutado
en dos pasos: primeiro, aplicando procedimentos para la
creación de redes complementares, esto es, redes que
individualmente son eficaces pero que cometen erros
diferentes; segundo, probando sobre esas redes, algunos de
los principales métodos de combinación disponibles. Dentro
de los procedimentos para la creación de redes
complementares, se eligieron los basados en alteración del
conjunto de entrenamiento. Los métodos Bootstrap y Arc-x4
fueron seleccionados para utilizarlos em el estudio de
casos, conjuntamente con el método RDP (Replicación
Dirigida de Padrones). Con respecto a los métodos de
combinación disponibles, se le dió particular atención al
método de combinación por integrales nebulosas. Además de
este método, se implementaron: combinación por media,
votación por pluralidad y Borda cont. Las aplicaciones
seleccionadas para pruebas consideran dos vertientes
importantes en la área de visión computacional -
Clasificación de Coberturas de Suelo por Imágenes de
Shastalite y Reconocimiento de Expresiones Faciales. Aunque
ambas pertencen a la misma área de conocimento, fueron
seleccionadas de modo con diferentes níveles de dificuldad
como tareas de clasificación - Mientras la primera contó
con un gran número de padrones disponibles, la segunda fue
comparativamente limitada em ese sentido. Como resultado
final, se comprobó la viabilidad de la utilización de
comités en problemas de clasificación, incluso con las
posibles variaciones de desempeño relacionadas con la
complejidad de esos problemas. El método de combinación
basado en integrales nebulosas se mostró particularmente
eficiente asociado al procedimiento RDP para formación de
las redes comisionadas, pero no siempre fue satisfactorio.
Considerado individualmente, el RDP tiene la limitación de
crear, como máximo, tantas redes como clases consideradas
en un problema; sin embargo, cuando el número de redes fue
considerado como base de comparación, el RDP se mostró más
eficaz, en la media de todos los métodos de combinación,
que los procedimentos Bootstrap y Arc-x4. Por otro lado,
tanto el Bootstrap como el Arc-x4 tiene la importante
ventaja de permitir la formación de un número cresciente de
miembros, lo que generalmente mejora el desempeño global en
relación al RDP.
|
3 |
[en] QUANTUM-INSPIRED EVOLUCIONARY ALGORITHM WITH MIXED REPRESENTATION APPLIED TO NEURO-EVOLUTION / [pt] ALGORITMO EVOLUCIONÁRIO COM INSPIRAÇÃO QUÂNTICA E REPRESENTAÇÃO MISTA APLICADO A NEUROEVOLUÇÃOANDERSON GUIMARAES DE PINHO 06 April 2011 (has links)
[pt] Esta dissertação objetivará a unificação de duas metodologias de algoritmos
evolutivos consagradas para tratamento de problemas ou do tipo combinatórios,
ou do tipo numéricos, num único algoritmo com representação mista. Trata-se de
um algoritmo evolutivo inspirado na física quântica com representação mista
binário-real do espaço de soluções, o AEIQ-BR. Este algoritmo trata-se de uma
extensão do modelo com representação binária de Jang, Han e Kin, o AEIQ-B
para otimizações combinatoriais, e o de representação real de Abs da Cruz, o
AEIQ-R para otimizações numéricas. Com fins de exemplificação do novo
algoritmo proposto, o discutiremos no contexto de neuroevolução, com o
propósito de configurar completamente uma rede neural com alimentação adiante
em termos: seleção de variáveis de entrada; números de neurônios na camada
escondida; todos os pesos existentes; e tipos de funções de ativação de cada
neurônio. Esta finalidade em se aplicar o algoritmo AEIQ-BR à neuroevolução – e
também, numa analogia ao modelo NEIQ-R de Abs da Cruz – receberá a
denominação NEIQ-BR. N de neuroevolução, E de evolutivo, IQ de inspiração
quântica, e BR de binário-real. Para avaliar o desempenho do NEIQ-BR, utilizarse-
á um total de seis casos benchmark de classificação, e outros dois casos reais,
em campos da ciência como: finanças, biologia e química. Resultados serão
comparados com algoritmos de outros pesquisadores e a modelagem manual de
redes neurais, através de medidas de desempenho. Através de testes estatísticos
concluiremos que o algoritmo NEIQ-BR apresentará um desempenho
significativo na obtenção de previsões de classificação por neuroevolução. / [en] This work aimed to unify two methodologies of evolutionary algorithms to
treat problems with or combinatorial characteristics, or numeric, on a unique
algorithm with mix representation. It is an evolutionary algorithm inspired in
quantum physics with mixed representation of the solutions space, called QIEABR.
This algorithm is an extension of the model with binary representation of the
chromosome from Jang, Han e Kin, the QIEA-B for combinatorial optimization,
and numeric representation from Abs da Cruz, the QIEA-R for numerical
optimizations. For purposes of exemplification of the new algorithm, we will
introduce the algorithm in the context of neuro-evolution, in order to completely
configure a feed forward neural network in terms of: selection of input variables;
numbers of neurons in the hidden layer; all existing synaptic weights; and types of
activation functions of each neuron. This purpose when applying the algorithm
QIEA-BR to neuro-evolution receive the designation of QIEN-BR. QI for
quantum-inspired, E for evolutive, N for neuro-evolution, and BR for binary-real
representation. To evaluate the performance of QIEN-BR, we will use a total of
six benchmark cases of classification, and two real cases in fields of science such
as finance, biology and chemistry. Results will be compared with algorithms of
other researchers and manual modeling of neural networks through performance
measures. Statistical tests will be provided to elucidate the significance of results,
and what we can conclude is that the algorithm QIEN-BR better performance
others researchers in terms of classification prediction.
|
4 |
[en] DATA SELECTION FOR LVQ / [pt] SELEÇÃO DE DADOS EM LVQRODRIGO TOSTA PERES 20 September 2004 (has links)
[pt] Nesta dissertação, propomos uma metodologia para seleção de
dados em
modelos de Aprendizado por Quantização Vetorial,
referenciado amplamente na
literatura pela sigla em inglês LVQ. Treinar um modelo
(ajuste dentro-daamostra)
com um subconjunto selecionado a partir do conjunto de dados
disponíveis para o aprendizado pode trazer grandes
benefícios no resultado de
generalização (fora-da-amostra). Neste sentido, é muito
importante realizar uma
busca para selecionar dados que, além de serem
representativos de suas
distribuições originais, não sejam ruído (no sentido
definido ao longo desta
dissertação). O método proposto procura encontrar os pontos
relevantes do
conjunto de entrada, tendo como base a correlação do erro
de cada ponto com o
erro do restante da distribuição. Procura-se, em geral,
eliminar considerável parte
do ruído mantendo os pontos que são relevantes para o
ajuste do modelo
(aprendizado). Assim, especificamente em LVQ, a atualização
dos protótipos
durante o aprendizado é realizada com um subconjunto do
conjunto de
treinamento originalmente disponível. Experimentos
numéricos foram realizados
com dados simulados e reais, e os resultados obtidos foram
muito interessantes,
mostrando claramente a potencialidade do método proposto. / [en] In this dissertation, we consider a methodology for
selection of data in
models of Learning Vector Quantization (LVQ). The
generalization can be
improved by using a subgroup selected from the available
data set. We search the
original distribution to select relevant data that aren't
noise. The search aims at
relevant points in the training set based on the
correlation between the error of
each point and the average of error of the remaining data.
In general, it is desired
to eliminate a considerable part of the noise, keeping the
points that are relevant
for the learning model. Thus, specifically in LVQ, the
method updates the
prototypes with a subgroup of the originally available
training set. Numerical
experiments have been done with simulated and real data.
The results were very
interesting and clearly indicated the potential of the
method.
|
5 |
[en] CONTROL OF A ROBOTIC HAND USING SURFACE ELECTROMYOGRAPHIC SIGNALS / [pt] CONTROLE DE UMA MÃO ROBÓTICA ACIONADA POR SINAIS ELETROMIOGRÁFICOS DE SUPERFÍCIECARLOS GERARDO PAUCAR MALQUI 07 March 2017 (has links)
[pt] Esta dissertação propõe um sistema de controle de uma mão robótica
utilizando sinais eletromiográficos de superfície (sEMG). Os sinais sEMG
são coletados de três diferentes grupos musculares do antebraço superior:
músculo palmar longo, músculo extensor dos dedos, e músculo extensor
radial longo do carpo. O objetivo dessa pesquisa é o desenvolvimento
de um protótipo de uma prótese robótica para pessoas que apresentam
amputação da mão, controlado por uma interface eletromiográfica baseada
em inteligência computacional. Este trabalho abrange os seguintes tópicos:
posicionamento dos eletrodos para capturar os sinais sEMG, projeto de
um sistema de eletromiografia como interface muscular, método de pré processamento
de sinais, uso de técnicas de inteligência computacional
para a interpretação dos sinais sEMG, projeto da mão robótica, e método
de controle utilizado para controlar as posições dos dedos e o controle
da força da mão. Nesta dissertação é utilizada a transformada wavelet
como método de extração de características nos sinais eletromiográficos,
e uma rede neural multicamada como método de classificação de padrões.
O modelo proposto apresentou resultados satisfatórios, conseguindo 90,5 por cento
de classificação correta dos padrões para o reconhecimento de 6 posturas
diferentes da mão, 94,3 por cento para 5 posturas, e 96,25 por cento para 4 posturas. / [en] This thesis proposes the control of a robotic hand system using surface
electromyographic signals (sEMG). The sEMG signals are collected
from three different muscle groups of the upper forearm: palmaris longus
muscle, extensor digitorum communis muscle, and extensor carpi radialis
longus muscle. The objective of this research is to develop a prototype
of a robotic prosthesis for people with hand amputation, controlled by
an electromyographic interface based on computational intelligence. This
thesis covers the following topics: positioning of electrodes to capture the
sEMG signals, design of an electromyography muscle interface, preprocessing
method, use of techniques of computational intelligence for the interpretation
of the sEMG signals, design of the robotic hand, and method
used to control the positions of the fingers and of the hand grip force.
Here, the wavelet transform is used as a feature extraction method in electromyographic
signals, and a multi-layer neural network as a pattern classification
method. The proposed model obtained satisfactory results, recognizing
90.5 per cent of the positions for 6 different hand patterns, 94.3 per cent for 5, and
96.25 per cent for 4 positions.
|
6 |
[en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION / [es] MINERACIÓN DE DATOS PARA LA SOLUCIÓN DE PROBLEMAS DE MARKETING DIRECTO Y SEGMENTACIÓN DE MERCADO / [pt] MINERAÇÃO DE DADOS APLICADA NA SOLUÇÃO DE PROBLEMAS DE MARKETING DIRETO E SEGMENTAÇÃO DE MERCADOHUGO LEONARDO COSTA DE AZEVEDO 28 August 2001 (has links)
[pt] Devido à quantidade cada vez maior de dados armazenada
pelas instituições, a área de mineração de dados tem se
tornado cada vez mais relevante e vários métodos e métodos
têm sido propostos de maneira a aumentar sua aplicabilidade
e desempenho. Esta dissertação investiga o uso de diversos
métodos e técnicas de mineração de dados na modelagem e
solução de problemas de Marketing. O objetivo do trabalho
foi fazer um levantamento de alguns métodos e técnicas de
mineração, avaliar seus desempenhos e procurar integrá-los
na solução de problemas de marketing que envolvessem
tarefas de agrupamento ou classificação. O trabalho
consistiu de quatro etapas principais: estudo sobre o
processo de descoberta de conhecimento em bancos de dados
(KDD - Knowledge Discovery in Databases); estudo sobre
Marketing e alguns problemas de Marketing de Banco de Dados
(DBM - Database Marketing) que envolvessem tarefas de
agrupamento e classificação; levantamento e estudo de
métodos e técnicas de Inteligência Computacional e
Estatística que pudessem ser empregados na solução de
alguns desses problemas; e estudos de caso. A primeira
etapa do trabalho envolveu um estudo detalhado das diversas
fases do processo de KDD: limpeza dos dados; seleção;
codificação e transformação; redução de dimensionalidade;
mineração; e pós-processamento. Na segunda etapa foram
estudados os principais conceitos de Marketing e de DBM e a
relação entre eles e o processo de KDD. Pesquisaram-se
alguns dos tipos de problemas comuns na área e escolheram-
se para análise dois que fossem suficientemente complexos e
tivessem a possibilidade de se ter acesso a alguma empresa
que fornecesse os dados e validasse a solução
posteriormente. Os casos selecionados foram um de marketing
direto e outro de segmentação de mercado. Na terceira
etapa, foram estudados os métodos de Inteligência
Computacional e Estatística usualmente empregados em
tarefas de agrupamento e classificação de dados. Foram
estudados: Redes Perceptron Multi-Camadas, Mapas Auto-
Organizáveis, Fuzzy C-Means, K-means, sistemas Neuro-Fuzzy,
Árvores de Decisão, métodos Hierárquicos de agrupamento,
Regressão Logística, Fuções Discriminantes de Fisher, entre
outros. Por fim, na última etapa, procurou-se integrar
todos os métodos e técnicas estudados na solução de dois
estudos de caso, propostos inicialmente na segunda etapa do
trabalho. Uma vez proposta a solução para os estudos de
caso, elas foram levadas aos especialistas em Marketing das
empresas para serem validadas no âmbito do negócio. Os
estudos de caso mostraram a grande utilidade e
aplicabilidade dos métodos e técnicas estudadas em
problemas de marketing direto e segmentação de mercado. Sem
o emprego dos mesmos, a solução para muitos desses
problemas tornar-se-ia extremamente imprecisa ou até mesmo
inviável. Mostraram também a grande importância das fases
iniciais de pré-processamento dos dados no processo de KDD.
Muitos desafios persistem ainda na área de mineração de
dados, como a dificuldade de modelar dados não lineares e
de manipular quantidades muito grande de dados, o que
garante um vasto campo para pesquisa nos próximos anos. / [en] The Data Mining field has received great attention lately,
due to the increasing amount of data stored by companies
and institutions. A great number of Data Mining methods
have been proposed so far, which is good but sometimes
leads to confusion. This dissertation investigates the
performance of many different methods and techniques of
Data Mining used to model and solve Marketing problems. The
goal of this research was to look for and study some data
mining methods, compare them, and try to integrate them to
solve Marketing problems involving clustering and
classification tasks. This research can be divided in four
stages: a study of the process of Knowledge Discovery in
Databases (KDD); a study about Marketing problems involving
clustering and classification; a study of some methods and
techniques of Statistics and Computational Intelligence
that could be used to solve some of those problems; and
case studies. On the first stage of the research, the
different tasks (clustering, classification, modeling, etc)
and phases (data cleansing, data selection, data
transformation, Data Mining, etc) of a KDD process were
studied in detail. The second stage involved a study of the
main concepts of Marketing and Database Marketing and their
relation to the KDD process. The most common types of
problems in the field were studied and, among them, two
were selected to be furthered analyzed as case studies. One
case was related to Direct Marketing and the other to
Market Segmentation. These two cases were chosen because
they were complex enough and it was possible to find a
company to provide data to the problem and access to their
marketing department. On the third stage, many different
methods for clustering and classification were studied and
compared. Among those methods, there were: Multilayer
Perceptrons, Self Organizing Maps, Fuzzy C-Means, K-Means,
Neuro-Fuzzy systems, Decision Trees, Hierarquical
Clustering Methods, Logistic Regression, Fisher`s Linear
Discriminants, etc Finally, on the last stage, all the
methods and techniques studied were put together to solve
the two case studies proposed earlier. Once they were
solved, their solutions were submitted to the Marketing
Department of the company who provided the data, so that
they could validate the results in the context of their
business. The case studies were able to show the large
potential of applicability of the methods and techniques
studied on problems of Market Segmentation and Direct
Marketing. Without employing those methods, it would
be very hard or even impossible to solve those problems.
The case studies also helped verify the very important
role of the data pre-processing phase on the KDD process.
Many challenges persist in the data mining field. One could
mention, for example, the difficulty to model non-linear
data and to manipulate larges amounts of data. These and
many other challenges provide a vast field of research to
be done in the next years. / [es] Debido a la cantidad cada vez mayor de datos almacenados
por las instituiciones, el área de mineración de datos há
ganado relevancia y varios métodos han sido propuestos para
aumentar su aplicabilidad y desempeño. Esta disertación
investiga el uso de diversos métodos y técnicas de
mineración de datos en la modelación y solución de
problemas de Marketing. EL objetivo del trabajo fue hacer
un levantamiento de algunos métodos y técnicas de
mineración, evaluar su desempeño e integrarlos en la
solución de problemas de marketing que involucran tareas de
agrupamiento y clasificación. EL trabajo consta de cuatro
etapas principales: estudio sobre el proceso de
descubrimiento de conocimientos en bancos de datos (KDD -
Knowledge Discovery in Databases); estudio sobre Marketing
y algunos problemas de Marketing de Banco de Datos (DBM -
Database Marketing) que incluyen tareas de agrupamientoy
clasificación; levantamiento y estudio de métodos y
técnicas de Inteligencia Computacional y Estadística que
pueden ser empleados en la solución de algunos problemas; y
por último, estudios de casos. La primera etapa del trabajo
contiene un estudio detallado de las diversas fases del
proceso de KDD: limpeza de datos; selección; codificación y
transformación; reducción de dimensionalidad; mineración; y
posprocesamento. En la segunda etapa fueron estudados los
principales conceptos de Marketing y de DBM y la relación
entre ellos y el proceso de KDD. Algunos de los tipos de
problemas comunes en la área fueron investigados,
seleccionando dos de ellos, por ser suficientemente
complejos y tener posibilidad de acceso a alguna empresa
que suministrase los datos y evaluase posteriormente la
solución. Los casos selecionados fueron uno de marketing
directo y otro de segmentación de mercado. En la tercera
etapa, se estudiaron los métodos de Inteligencia
Computacional y Estadística que son empleados usualmente en
tareas de agrupamiento y clasificación de datos. Éstos
fueron: Redes Perceptron Multicamada, Mapas
Autoorganizables, Fuzzy C-Means, K-means, sistemas Neuro-
Fuzzy, Árboles de Decisión, métodos Jerárquicos de
agrupamiento, Regresión Logística, Fuciones Discriminantes
de Fisher, entre otros. En la última etapa, se integraron
todos los métodos y técnicas estudiados en la solución de
dos estudios de casos, propuestos inicialmente en la
segunda etapa del trabajo. Una vez proposta la solución
para el estudios de casos, éstas fueron evaluadas por los
especialistas en Marketing de las empresas. Los estudios de
casos mostraron la grande utilidad y aplicabilidad de los
métodos y técnicas estudiadas en problemas de marketing
directo y segmentación de mercado. Sin el empleo de dichos
métodos, la solución para muchos de esos problemas sería
extremadamente imprecisa o hasta incluso inviáble. Se
comprobó también la gran importancia de las fases iniciales
de preprocesamiento de datos en el proceso de KDD. Existen
todavía muchos desafíos en el área de mineración de datos,
como la dificuldad de modelar datos no lineales y de
manipular cantidades muy grandes de datos, lo que garantiza
un vasto campo de investigación
|
Page generated in 0.0427 seconds