1 |
[en] FUZZY RULES EXTRACTION FROM SUPPORT VECTOR MACHINES (SVM) FOR MULTI-CLASS CLASSIFICATION / [pt] EXTRAÇÃO DE REGRAS FUZZY PARA MÁQUINAS DE VETOR SUPORTE (SVM) PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSESADRIANA DA COSTA FERREIRA CHAVES 25 October 2006 (has links)
[pt] Este trabalho apresenta a proposta de um novo método para
a extração de
regras fuzzy de máquinas de vetor suporte (SVMs) treinadas
para problemas de
classificação. SVMs são sistemas de aprendizado baseados
na teoria estatística
do aprendizado e apresentam boa habilidade de
generalização em conjuntos de
dados reais. Estes sistemas obtiveram sucesso em vários
tipos de problemas.
Entretanto, as SVMs, da mesma forma que redes neurais
(RN), geram um
modelo caixa preta, isto é, um modelo que não explica o
processo pelo qual
sua saída é obtida. Alguns métodos propostos para reduzir
ou eliminar essa
limitação já foram desenvolvidos para o caso de
classificação binária, embora
sejam restritos à extração de regras simbólicas, isto é,
contêm funções ou
intervalos nos antecedentes das regras. No entanto, a
interpretabilidade de
regras simbólicas ainda é reduzida. Deste modo, propõe-se,
neste trabalho, uma
técnica para a extração de regras fuzzy de SVMs treinadas,
com o objetivo de
aumentar a interpretabilidade do conhecimento gerado. Além
disso, o modelo
proposto foi desenvolvido para classificação em múltiplas
classes, o que ainda
não havia sido abordado até agora. As regras fuzzy obtidas
são do tipo se x1
pertence ao conjunto fuzzy C1, x2 pertence ao conjunto
fuzzy C2,..., xn pertence
ao conjunto fuzzy Cn, então o ponto x = (x1,...,xn) é da
classe A. Para testar o
modelo foram realizados estudos de caso detalhados com
quatro bancos de
dados: Íris, Wine, Bupa Liver Disorders e Winconsin Breast
Cancer. A cobertura
das regras resultantes da aplicação desse modelo nos
testes realizados
mostrou-se muito boa, atingindo 100% no caso da Íris. Após
a geração das
regras, foi feita uma avaliação das mesmas, usando dois
critérios, a abrangência
e a acurácia fuzzy. Além dos testes acima mencionados foi
comparado o
desempenho dos métodos de classificação em múltiplas
classes usados no
trabalho. / [en] This text proposes a new method for fuzzy rule extraction from support
vector machines (SVMs) trained to solve classification problems. SVMs are
learning systems based on statistical learning theory and present good ability of
generalization in real data base sets. These systems have been successfully
applied to a wide variety of application. However SVMs, as well as neural
networks, generates a black box model, i.e., a model which does not explain the
process used in order to obtain its result. Some considered methods to reduce
this limitation already has been proposed for the binary classification case,
although they are restricted to symbolic rules extraction, and they have, in their
antecedents, functions or intervals. However, the interpretability of the symbolic
generated rules is small. Hence, to increase the linguistic interpretability of the
generating rules, we propose a new technique for extracting fuzzy rules of a
trained SVM. Moreover, the proposed model was developed for classification in
multiple classes, which was not introduced till now. Fuzzy rules obtained are
presented in the format if x1 belongs to the fuzzy set C1, x2 belongs to the fuzzy
set C2 , … , xn belongs to the fuzzy set Cn , then the point x=(x1, x2, …xn) belongs
to class A. For testing this new model, we performed detailed researches on four
data bases: Iris, Wine, Bupa Liver Disorders and Wisconsin Breast Cancer. The
rules´ coverage resultant of the application of this method was quite good,
reaching 100% in Iris case. After the rules generation, its evaluation was
performed using two criteria: coverage and accuracy. Besides the testing above,
the performance of the methods for multi-class SVM described in this work was
evaluated.
|
2 |
[en] REDUCING TEACHER-STUDENT INTERACTIONS BETWEEN TWO NEURAL NETWORKS / [pt] REDUZINDO AS INTERAÇÕES PROFESSOR-ALUNO ENTRE DUAS REDES NEURAISGUSTAVO MADEIRA KRIEGER 11 October 2019 (has links)
[pt] Propagação de conhecimento é um dos pilares da evolução humana. Nossas descobertas são baseadas em conhecimentos já existentes, construídas em cima deles e então se tornam a fundação para a próxima geração de aprendizado. No ramo de Inteligência Artificial, existe o interesse em replicar esse aspecto da natureza humana em máquinas. Criando um primeiro modelo e treinando ele nos dados originais, outro modelo pode ser criado e aprender a partir dele ao invés de ter que começar todo o processo do zero. Se for comprovado que esse método é confiável, ele vai permitir várias mudanças na forma que nós abordamos machine learning, em que cada inteligência não será um microcosmo independente. Essa relação entre modelos é batizada de relação Professor-Aluno. Esse trabalho descreve o desenvolvimento de dois modelos distintos e suas capacidades de aprender usando a informação dada em um ao outro. Os experimentos apresentados aqui mostram os resultados desse treino e as diferentes metodologias usadas em busca do cenário ótimo em que esse processo de aprendizado é viável para replicação futura. / [en] Propagation of knowledge is one of the pillars of human evolution. Our discoveries are all based on preexisting knowledge, built upon them and then become the foundation for the next generation of learning. In the field of artificial intelligence, there s an interest in replicating this aspect of human nature on machines. By creating a first model and training it on the original data, another model can be created and learn from it instead of having to learn everything from scratch. If this method is proven to be reliable, it will allow many changes in the way that we approach machine learning, specially allowing different models to work together. This relation between models is nicknamed the Teacher-Student relation. This work describes the development of two separate models and their ability to learn using incomplete data and each other. The experiments presented here show the results of this training and the different methods used in the pursuit of an optimal scenario where such learning process is viable for future use.
|
Page generated in 0.039 seconds