• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] ANÁLISE COMPARATIVA DA PREVISÃO DE DEMANDA DE ENERGIA ELÉTRICA INDUSTRIAL NO PERÍODO PÓS - CRISE: UMA APLICAÇÃO DOS MODELOS VAR E BVAR / [en] FORECASTING THE INDUSTRIAL ELECTRIC ENERGY DEMAND DURING THE POST CRISIS PERIOD USING VAR AND BVAR MODELS: A COMPARISON ANALYSIS

PAULO ROBERTO BASTOS MAIA 06 July 2011 (has links)
[pt] Esse estudo tem como objetivo efetuar previsões não condicionadas de demanda de energia elétrica no Brasil para a classe industrial entre os meses de Janeiro e Dezembro de 2010. Para tanto, verificou-se a causalidade entre as variáveis em estudo, em seguida se as mesmas eram estacionárias ou processos integrados. Posteriormente procedeu-se ao teste de co-integração, cujo intuito era determinar se as séries apresentavam alguma tendência comum ao longo do tempo. As previsões foram estimadas através do Modelo de Correção de Erros na abordagem Clássica (VAR/VEC) e Bayesiana (BVAR/BVEC) e, ao fim, efetuou-se uma análise comparativa através da média dos erros. Os resultados obtidos mostraram que a metodologia Bayesiana se fez mais acurada do que a metodologia Clássica. / [en] This thesis describes two multivariate statistical based approaches to generate unconditional monthly forecasts for the brazilian industrial electricity demand covering the lead time spanning from Jan/2010 to Dec/2010. For that, it was first checked the causality among the series involved followed by stationarity tests. It was also carried out cointegration tests to check the existence of long range trend among the series. The two approaches adopted were, respectivelly, the Classical Error Correction Vector Model (VAR/VEC) and the Bayesian counterpart (BVAR/BVEC); both modelling simultaneously the series involved in the study as a vector of time series that follow a kind of vector autoregressive structure. The results obtained with both, were compared, and, a main conclusion of the thesis, the Bayesian model produced better results, in terms of accuracy, them the Classical counterpart.

Page generated in 0.0258 seconds