1 |
[pt] ANÁLISE COMPARATIVA DA PREVISÃO DE DEMANDA DE ENERGIA ELÉTRICA INDUSTRIAL NO PERÍODO PÓS - CRISE: UMA APLICAÇÃO DOS MODELOS VAR E BVAR / [en] FORECASTING THE INDUSTRIAL ELECTRIC ENERGY DEMAND DURING THE POST CRISIS PERIOD USING VAR AND BVAR MODELS: A COMPARISON ANALYSISPAULO ROBERTO BASTOS MAIA 06 July 2011 (has links)
[pt] Esse estudo tem como objetivo efetuar previsões não condicionadas de
demanda de energia elétrica no Brasil para a classe industrial entre os meses de
Janeiro e Dezembro de 2010. Para tanto, verificou-se a causalidade entre as
variáveis em estudo, em seguida se as mesmas eram estacionárias ou processos
integrados. Posteriormente procedeu-se ao teste de co-integração, cujo intuito era
determinar se as séries apresentavam alguma tendência comum ao longo do
tempo. As previsões foram estimadas através do Modelo de Correção de Erros na
abordagem Clássica (VAR/VEC) e Bayesiana (BVAR/BVEC) e, ao fim,
efetuou-se uma análise comparativa através da média dos erros. Os resultados
obtidos mostraram que a metodologia Bayesiana se fez mais acurada do que a
metodologia Clássica. / [en] This thesis describes two multivariate statistical based approaches to
generate unconditional monthly forecasts for the brazilian industrial electricity
demand covering the lead time spanning from Jan/2010 to Dec/2010. For that, it
was first checked the causality among the series involved followed by stationarity
tests. It was also carried out cointegration tests to check the existence of long
range trend among the series. The two approaches adopted were, respectivelly, the
Classical Error Correction Vector Model (VAR/VEC) and the Bayesian
counterpart (BVAR/BVEC); both modelling simultaneously the series involved in
the study as a vector of time series that follow a kind of vector autoregressive
structure. The results obtained with both, were compared, and, a main conclusion
of the thesis, the Bayesian model produced better results, in terms of accuracy,
them the Classical counterpart.
|
2 |
[en] UNIVARIATE TECHNIQUES PERFECTED FOR THE ELECTRIC LOAD FORECAST OF SHORT STATED PERIOD FROM HOURLY DATA / [pt] TÉCNICAS UNIVARIADAS APERFEIÇOADAS PARA A PREVISÃO DE CURTÍSSIMO PRAZO PARTIR DE DADOS HORÁRIOSGLAUCIA DE PAULA FALCO 20 April 2006 (has links)
[pt] O ONS (operador nacional do sistema elétrico brasileiro)
vem utilizando o software ANNSTLF produzido pelo
EPRI/EUA
(Eletrical Power Research Institute) para realizar a
previsão do consumo de carga horária. Entretanto, as
estimativas fornecidas pelo programa estão fundamentadas
na metodologia de uma rede neural que, de certo modo,
impede ao usuário de extrair uma maior interpretação dos
resultados que são fornecidos pela rede. Assim sendo,
este
trabalho pesquisou os métodos univariados convencionais:
Holt-Winters e Box e Jenkins, considerando suas
formulações aperfeiçoadas e adaptadas às características
próprias do tipo de série em questão. Isto é, assumindo
a
existência de dois ciclos sazonais: um diário e outro
semanal. A vantagem destas técnicas univariadas, em
comparação ao ANNSTLF, é principalmente a
interpretabilidade das informações obtidas. Dessa forma,
esta pesquisa permite também avaliar melhor o desempenho
do ANNSTLF. / [en] The ONS (National Operator of the Brazilian electrical
system) has been using the software ANNSTLF produced by
EPRI/USA (Eletrical Power Research Institute) to carry out
the forecast of the hourly load consumption. However, the
estimates supplied by the program are based on the
methodology of a neural net that, in a way, does not allow
the user to extract a better interpretation of the results
produced by the net. Therefore, investigates the
conventional univaried methods: Holt-Winters and Box &
Jenkins, considering its formulations perfected and
adapted to the characteristics of the series understudy.
That is, its assumed the existence of two seasonal cicles:
daily and weekly. The advantage of these univariate
techniques, in comparison to the ANNSTLF, is mainly the
ability to interpret the model estimates. Also, this
research also allows a better evaluation the performance
of the ANNSTLF.
|
3 |
[pt] ENSAIOS SOBRE PREVISÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS / [en] ESSAYS ON HIERARCHICAL TIME SERIES FORECASTINGMAURICIO FRANCA LILA 04 July 2023 (has links)
[pt] O presente estudo, apresenta um conjunto de propostas metodológicas
relacionadas a reconciliação de previsões em Séries Temporais Hierárquicas.
O principal objetivo é apresentar soluções originais ao tema, buscando obter
previsões mais acuradas do que as obtidas por modelos independentes para
os diferentes níveis da hierarquia. Os estudos foram realizados considerando
dados reais, mostrando a potencialidade de aplicação dos métodos desenvolvidos em diferentes cenários, onde as series temporais são estruturadas de forma
hierárquica. Esta tese é composta por um conjunto de ensaios que exploram
a reconciliação de previsão sob a ótica de um modelo de regressão, que dá
origem a reconciliação ótima. A primeira contribuição trata do problema da
reconciliação de previsões na perspectiva de estimadores robustos. A proposta
apresenta uma contribuição original aplicada a dados dos de pesquisas de força
de trabalho no Brasil, apresentando um conjunto de soluções que podem direcionar políticas públicas eficientes. Neste caso, as previsões reconciliadas obtidas através de estimadores robustos possibilitaram um maior ganho em termos
acurácia e uma performance equivalente aos métodos que representam o estado da arte sobre reconciliação de previsões em séries temporais hierárquicas.
A segunda contribuição trata do problema da reconciliação ótima em séries
de consumo de energia no Brasil, apresentado uma proposta alternativa, menos sensível a valores estremos. Os resultados obtidos neste segundo trabalho
apresentam melhoramentos consideráveis em métricas de avaliação padrão no
que diz respeito as novas previsões. Uma terceira proposta busca oferecer uma
estrutura alternativa de covariância dos erros de previsão, que irá ampliar o
conjunto de propostas apresentadas na literatura para o método de reconciliação denominado por MinT (do inglês, Minimum Trace) , que minimiza os
erros de reconciliação, oferecendo um estimador de variância mínima. / [en] This study presents a set of methodological proposals aimed at improving forecast reconciliation in the context of Hierarchical Time Series. The main
objective is to present original solutions to the theme, seeking to obtain more
accurate forecasts than those obtained by independent models for the different
levels of the hierarchy. The studies were conducted using real data, showing
the potentiality of application of the methods developed in different scenarios,
in which the time series are structured in a hierarchical fashion. This thesis
is composed of a set of essays that explore forecast reconciliation from the
perspective of a regression model, which gives foundations to optimal reconciliation. The first contribution addresses the problem of forecast reconciliation
from the perspective of robust estimators. The proposal presents an original
contribution applied to data from labor force surveys in Brazil, presenting a
set of solutions that can drive efficient public policies. In this case, the reconciled forecasts obtained through robust estimators provided consistent gains
in terms of accuracy when compared to methods that represent the state-of-the-art on forecast reconciliation in hierarchical time series. The second contribution deals with the problem of optimal reconciliation applied to energy
consumption time series in Brazil. We present an alternative proposal, less
sensitive to outlying forecasts at the reconciliation stage. The results obtained
in this second study show considerable improvements in standard evaluation
metrics with regard to the new forecasts. The third proposal seeks to offer
robust covariance structures for forecasting errors, which expands the set of
strategies presented in the literature. The main contribution is to incorporate
robust covariance estimates into the MinT (Minimum Trace) reconciliation
approach, which minimizes reconciliation errors, offering an estimator with
minimum variance.
|
Page generated in 0.0247 seconds