• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] RATE OF CONVERGENCE OF THE CENTRAL LIMIT THEOREM FOR THE MARTINGALE EXPRESSION OF DEVIATIONS OF TRIANGLE-FREE SUBGRAPH COUNTS IN G(N,M) RANDOM GRAPHS / [pt] TAXA DE CONVERGÊNCIA DO TEOREMA CENTRAL DO LIMITE PARA A EXPRESSÃO MARTINGAL DE DESVIO DA CONTAGEM DE SUBGRAFOS LIVRES DE TRIÂNGULOS EM GRAFOS ALEATÓRIOS G(N,M)

VICTOR D ANGELO COLACINO 27 May 2021 (has links)
[pt] Nessa dissertação vamos introduzir, elaborar e combinar ideias da Teoria de martingais, a Teoria de grafos aleatórios e o Teorema Central do Limite. Em particular, veremos como martingais podem ser usados para representar desvios de contagem de subgrafos. Usando esta representação e o Teorema Central do Limite para martingais, conseguiremos demonstrar um Teorema Central do Limite para a contagem de subgrafos livres de triângulos no grafo aleatório Erdos-Rényi G(n,m) . Além disso, nossa demonstração também nos trará informação sobre a taxa de convergência, mostrando que a distribuição dos desvios converge rapidamente para a distribuição normal. / [en] In this dissertation we shall introduce, elaborate and combine ideas from martingale Theory, random graph Theory and the Central Limit Theorem. In particular, we will see how martingales can be used to represent deviations of subgraph counts. Using this representation and the Central Limit Theorem for martingales, we will be able to demonstrate a Central Limit Theorem for the triangle-free subgraph count in the Erdos-Rényi G(n,m) random graph. Furthermore, our proof also gives us information about the rate of convergence, showing that the distribution of deviations converges rapidly to the normal distribution.

Page generated in 0.0408 seconds