• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO / [en] APPLICATION OF MACHINE LEARNING AND DATA DRIVEN TECHNIQUES TO SMART OIL WELLS

TAISA DORNELAS ABBAS CALVETTE 24 March 2020 (has links)
[pt] Realizar uma estimativa confiável na produção de petróleo é um dos grandes desafios na indústria de óleo e gás e é uma parte crítica no planejamento e na tomada de decisão das petrolíferas. Neste contexto, este trabalho visa explorar as vantagens e desempenho dos algoritmos de machine learning para realizar a previsão de produção de petróleo, gás e água a partir das informações de controle de poços inteligentes e usando a metodologia de data driven. Para tanto, foram usadas duas bases de dados com séries históricas de produção de petróleo, gás e água. A primeira base foi gerada sinteticamente (através de simulação de reservatórios) e consiste na produção média mensal e configuração de 3 válvulas de um poço injetor, ao longo de um período de 10 anos. A segunda base usa dados reais de produção (observados) fornecidos pelo estado da Dakota do Sul nos Estados Unidos. Esta base consiste na média diária de produção e o estado geral (ativo ou não produzindo) de diversos poços produtores de petróleo no período compreendido de 1950 a 2018. Com o intuito de testar a metodologia, foram realizados diversos experimentos combinando o treinamento da proxy com algoritmos de Redes Neurais Artificiais (Multilayer Perceptron) e deep learning com redes neurais recorrentes (redes neurais recorrentes simples, long short-term memory, Gated Recurrent Units), chamados de smart proxy e deep smart proxy respectivamente. Os resultados encontrados mostraram que o modelo deep smart proxy se mostrou bastante promissor. Utilizando uma rede Gated Recurrent Units com camadas bidirecionais (GRUB), foi possível obter uma redução no erro RMSE de 66 por cento e no erro MAE de 79 por cento quando comparados aos modelos smart proxy com Redes Neurais Artificiais. Verificou-se que nos modelos deep smart proxy, o uso de camadas bidirecionais gerou uma significativa melhora na previsão e redução do erro, tanto nos testes que utilizaram dados de produção simulados (caso sintético) quanto nos testes que utilizaram dados de produção observados (caso real), proporcionando uma variação de até 75 por cento no RMSE e 85 por cento no MAE. O erro RMSE normalizado na rede GRUB foi de 0,53 por cento nos dados observados e 0,65 por cento nos dados sintéticos. Os modelos de deep smart proxy obtiveram desempenhos muito semelhantes, principalmente ao comparar o desempenho das redes do tipo LSTMB e GRUB. Estas redes foram aplicadas em ambos os casos sintético e real de produção e superaram, em todos os casos, os resultados obtidos com o modelo de smart proxy com MLP. / [en] A reliable forecast for oil production represents one of the biggest challenges in the oil and gas industry and contributes to the planning and decision making of oil companies. Because of that, this work uses intelligent well valves settings and data driven methodology to explore the advantages and the performance of machine learning algorithms in the forecasting of oil, gas and water production. In order to do so, two database containing historical data series of oil, gas and water production were used. The first was generated synthetically (through reservoir simulation) and consisted of the average monthly production of an injection well over a period of 10 years, as well as the configuration of 3 of its valves. The second database used the production data provided by the state of South Dakota, located in the United States, and consisted of the daily production average and the overall well status (active or not producing) from several oil producing wells in a period ranging from 1950 to 2018. In order to test the methodology, several experiments were performed combining proxy with Artificial Neural Network Algorithms (Multilayer Perceptron) and deep learning recurrent neural networks (Simple Recurrent Neural Networks, long short-term memory, Gated Recurrent Units), which were named smart proxy and deep smart proxy, respectively. The results showed that the deep smart proxy model was very promising. Using the Gated Recurrent Units network with bi-directional layers (GRUB), a reduction of 66 percent in the RMSE error and 79 percent in the MAE error was obtained when compared to smart proxy models with Artificial Neural Networks. The deep smart proxy models with bidirectional layers generated a significant improvement in prediction and error reduction in both databases tests ( i.e. tests with simulated production data (synthetic case) and with the observed production data (real case), resulting in a variation of up to 75 percent in RMSE and 85 percent in MAE). The normalized RMSE error in the GRUB network was of 0.53 percent in the observed database and 0.65 percent in the synthetic database. It is important to notice that the Deep smart proxy models achieved very similar performances when comparing the LSTMB and GRUB network in both databases (synthetic and real production), surpassing in all cases the results obtained with the MLP smart proxy model.

Page generated in 0.0401 seconds