• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] SPATIAL PATTERN FORMATION IN POPULATION DYNAMICS / [pt] FORMAÇÃO DE PADRÕES ESPACIAIS NA DINÂMICA DE POPULAÇÕES

EDUARDO HENRIQUE FILIZZOLA COLOMBO 17 June 2015 (has links)
[pt] Motivado pela riqueza de fenômenos produzidos pelos seres vivos, este trabalho busca estudar a formação de padrões espaciais de populações biológicas. De um ponto de vista mesoscópico, definimos os processos básicos que podem ocorrer na dinâmica, construindo uma equação diferencial parcial para a evolução da distribuição da população. Essa equação incorpora duas generalizações de um modelo pre-existente para a dinâmica de um espécie, que leva em conta interações de longo alcance (não locais). A primeira generalização consiste em considerar que a difusão é não linear, isto é, é afetada pela densidade local de tal modo que o coeficiente de difusão segue uma lei de potência. Por outro lado, visto a alta complexidade envolvida na natureza dos parâmetros do modelo, introduzimos como segunda generalização parâmetros que flutuam no tempo. Idealizamos estas flutuações como um ruído descorrelacionado temporalmente e que obedece uma distribuição gaussiana (ruído branco). Para estudar o modelo resultante, utilizamos uma abordagem analítica e numérica. As ferramentas analíticas se baseiam na linearização da equação de evolução e portanto são aproximadas. Todavia, complementadas com resultados numéricos, conseguimos extrair conclusões relevantes. A não localidade das interações induz a formação de padrões. O alcance dessas interações é o que determina o modo dominante presente nos padrões. Assim, para valores dos parâmetros acima de um limiar crítico, emergem padrões. Analiticamente, mostramos que, mesmo abaixo desse limiar, as flutuações nos parâmetros podem induzir a aparição de ordem espacial. Os efeitos da difusão não-linear são captados superficialmente pela análise linear. Numericamente, mostraremos que sua presença modifica a forma dos padrões. Observamos, especialmente, a existência de uma transição quando alternamos entre o caso em que a difusão é facilitada por altas densidades e o caso oposto. Para o primeiro caso, verificamos que os padrões se tornam fragmentados, ou seja, a população é agora composta de sub-grupos desconectados. / [en] Motivated by the richness of phenomena produced by living beings, this work aims to study the formation of spatial patterns in biological populations. From the mesoscopic point of view, we define the basic processes that may occur in the dynamics, building a partial differential equation for the evolution of the population distribution. This equation incorporates two generalizations of a pre-existing model for the dynamics of one species, which takes into account long-range (nonlocal) interactions. The first generalization is to consider that diffusion is nonlinear, i.e., it is affected by the local density such that the diffusion coeficient follows a power law. On the other hand, because of the high complexity involved in the nature of model parameters, we introduced as a second generalization time-fluctuating parameters. We idealize these fluctuations as Gaussian temporally uncorrelated (white) noises. To study the resulting model, we use an analytical and numerical approach. Analytical tools are based on the linearization of the evolution equation and are therefore approximate. However, as evidenced by numerical results, we draw important conclusions. The nonlocal feature of the interaction is the main mechanism which induces pattern formation. We show that the extent of these interactions is what characterizes the dominant mode. Thus, for parameter values above a critical threshold patterns emerge. Analytically, we also show that even below this threshold, fluctuations in the parameters can induce the appearance of spatial order. The effects of nonlinear diffusion are only superficially captured by the linear analysis. Numerically, we show that their presence modifies the patterns shape. We mainly observed the existence of a qualitative difference between the cases when diffusion is facilitated or not by high densities. In the first case, we note that the patterns become fragmented, that is, population becomes composed of disconnected clusters.
2

[pt] ORGANIZAÇÃO ESPACIAL DE POPULAÇÕES DE ESPÉCIE ÚNICA / [en] SPATIAL ORGANIZATION OF SINGLE-SPECIES POPULATIONS

VIVIAN DE ARAUJO DORNELAS NUNES 22 December 2020 (has links)
[pt] É comum observar na natureza a emergência de comportamentos coletivos em populações biológicas, como formação de padrão. Neste trabalho, estamos interessados em caracterizar a distribuição de uma população de espécie única (como alguns tipos de bactérias ou de vegetação), a partir de modelos matemáticos que descrevem a evolução espaço-temporal, governados por processos elementares como: dispersão, crescimento e competição não-local por recursos. Primeiramente, utilizando uma generalização da equação de FKPP, analisamos numérica e analiticamente, o impacto de mecanismos de regulação dependentes da densidade, tanto na difusão quanto no crescimento. Tais mecanismos representam processos internos de retroalimentação, que modelam a resposta do sistema à superlotação ou rarefação da população. Mostramos que, dependendo do tipo de resposta em ação, os indivíduos podem se auto-organizar em subpopulações desconectadas (fragmentação), mesmo na ausência de restrições externas, ou seja, em uma paisagem homogênea. Discutimos o papel crucial que a dependência com a densidade tem na forma dos padrões, particularmente na fragmentação, o que pode trazer consequências importantes para processos de contato como disseminação de epidemias. Tendo compreendido esse fenômeno em um meio homogêneo, estudamos o papel que um ambiente heterogêneo tem na organização espacial de uma população, que representamos através de uma taxa de crescimento que varia com a posição. Investigamos as estruturas que emergem próximo a fronteira de um meio para o outro. Descobrimos que, dependendo da forma de interação nãolocal e de outros parâmetros do modelo, três perfis diferentes podem emergir a partir da interface: (i) oscilações não-atenuadas (ou padrões espaciais, sem decaimento da amplitude); (ii) oscilações atenuadas (com amplitude decaindo a partir da interface); (iii) decaimento exponencial (sem oscilações) a um perfil homogêneo. Relacionamos o comprimento de onda e a taxa de decaimento das oscilações com os parâmetros das interações (comprimento característico e forma de decaimento com a distância). Discutimos como as heterogeneidades do ambiente permitem acessar informações (ocultas no caso homogêneo) sobre os fenômenos biológicos do sistema, tais como os que mediam interações competitivas. / [en] It is common to observe in nature the emergence of collective behavior in biological populations, such as pattern formation. In this work, we are interested in characterizing the distribution of a single-species population (such as some bacteria or vegetation), based on mathematical models that describe the spatio-temporal evolution, and governed by elementary processes, such as: dispersion, growth, and nonlocal competition by resources. First, using a generalization of the FKPP equation, we analyze numerically and analytically the impact of density-dependent regulatory mechanisms, both on diffusion and growth. Such mechanisms represent processes of internal feedback, which shape the system s response to population overcrowding or rarefaction. We show that, depending on the type of the response in action, some individuals can organize themselves in disconnected sub-populations (fragmentation), even in the absence of external restrictions, that is in a homogeneous landscape. We discuss the crucial role that density-dependence has in the form of patterns, particularly in fragmentation, which can have important consequences for contact processes, such as the spread of epidemics. After understanding this phenomenon in a homogeneous environment, we study the role that a heterogeneous environment has in the spatial organization of a population, which was presented as a growth rate that varies with position. We investigate the structures that emerge near the border from one environment to the other. We found that, depending on the shape of nonlocal interaction and other model parameters, three different profiles can emerge from the interface: (i) sustained oscillations (or spatial patterns, without amplitude decay); (ii) attenuated oscillations (with amplitude decreasing from the interface); (iii) exponential decay (without oscillations) to a homogeneous profile. We related the wavelength and the rate of decay of oscillations with the parameters of the interaction (characteristic length and form of decay with distance). We discussed how the heterogeneities of the environment allow access to information (hidden in the homogeneous case) about the biological phenomena of the system, such as those that mediate competitive interactions.

Page generated in 0.0428 seconds