1 |
[pt] MECANISMOS EM ESCALA DE POROS DE DESLOCAMENTO DE ÓLEO POR INJEÇÃO DE EMULSÃO / [en] PORE-SCALE MECHANISMS OF OIL DISPLACEMENT BY EMULSION INJECTIONCLARICE DE AMORIM 21 November 2024 (has links)
[pt] A injeção de água é o método mais utilizado para estender a vida produtiva de
reservatórios de petróleo. No entanto, sua eficiência é limitada pela relação de
mobilidade desfavorável entre a fase aquosa injetada e a fase oleosa deslocada.
A heterogeneidade das formações agrava essa questão, direcionando a água
através de caminhos preferenciais, resultando na retenção de óleo residual.
Estudos recentes propõem emulsões de óleo-em-água como agentes de bloqueio
para reduzir a mobilidade da fase aquosa. A redução da mobilidade associada
à captura de gotas da fase dispersa leva a uma frente de deslocamento mais
uniforme, aumentando a recuperação de óleo. Apesar dos avanços recentes
na injeção de emulsões como método de recuperação avançada de petróleo
(EOR), aspectos fundamentais do escoamento de emulsões óleo-em-água a
nível microscópico e sua relação com a redução macroscópica na mobilidade
da fase aquosa ainda necessitam de maior compreensão. Este estudo explora
fatores que influenciam a eficácia de um processo de injeção de emulsão,
incluindo o tamanho das gotas, a distribuição das gargantas de poros e a
vazão de injeção, que influenciam diretamente na redução da mobilidade.
Micromodelos bidimensionais foram empregados para visualizar a dinâmica
de retenção e liberação de gotas, relacionando fenômenos em escala de poros
à mobilidade da fase aquosa. Duas geometrias foram projetadas para este
propósito. O micromodelo linear assegura um gradiente de pressão e uma
velocidade constante ao longo de seu comprimento, enquanto a configuração
radial avalia o desempenho da injeção de emulsão sob diferentes números de
capilaridade. Nesta última configuração, a área de fluxo aumenta com o raio,
reduzindo a velocidade do escoamento à medida que o fluido se afasta do
ponto de injeção. Os resultados mostram que a redução da mobilidade pode
ser controlada pelo número de capilaridade e pela distribuição do tamanho
de gotas. Em números de capilaridade suficientemente altos, a diferença de
pressão na maioria das gargantas de poro supera a pressão capilar, empurrando
as gotas através das constrições. Nestes casos, a retenção de gotas é baixa e a
redução da mobilidade é fraca. Por outro lado, em números de capilaridade
baixos, a retenção de gotas é alta, causando uma redução significativa na
mobilidade da fase aquosa, que é fortemente dependente da distribuição do
tamanho de gotas. Além disso, no fluxo radial, o bloqueio de poros ocorre
abaixo de um número de capilaridade crítico, onde a força capilar supera a
pressão viscosa. O trabalho demonstra que a injeção de emulsão melhora a
eficiência de deslocamento a nível microscópico, reduzindo a saturação residual
de óleo. Os resultados podem orientar a seleção de características específicas
de emulsões a serem injetadas em reservatórios com distribuições conhecidas
de gargantas de poros, visando alcançar a necessária redução na mobilidade
da fase aquosa e, consequentemente, incrementar a recuperação de óleo. / [en] Water injection is the most commonly used method for extending the productive life of oil reservoirs; however, its efficiency is limited by an unfavorable
mobility ratio between the injected aqueous phase and the displaced oil phase.
Reservoir heterogeneity exacerbates this issue, driving water through preferential flow paths with lower capillary resistance, leaving trapped oil behind.
Recent studies propose oil-in-water emulsions as a pore-blocking agent to reduce aqueous phase mobility, leading to a more uniform displacement front
and enhancing oil recovery. Despite recent developments in emulsion injection for enhanced oil recovery (EOR), fundamental aspects of the pore-scale
dynamics of oil-in-water emulsion flow and its correlation with observed macroscopic mobility reduction remain not completely understood. This study
explores key factors influencing the design of an effective emulsion injection
process, including emulsion drop size, pore throat distribution, and injection
flow rate, and their impact on the mobility reduction of the aqueous phase.
Two-dimensional porous media micromodels were employed to visualize drop
dynamics, examining how pore-scale phenomena affect aqueous phase mobility
reduction. Two distinct geometries were designed for this purpose. The linear
micromodel ensures a constant pressure gradient and flow velocity along its
length, while the radial configuration assesses emulsion flooding performance
under varying capillary numbers. In the latter configuration, the flow area increases with the radius, reducing the flow velocity as the fluid moves away
from the injection point. Results show that mobility reduction can be finely
controlled by the capillary number and the drop size distribution. At sufficiently high capillary numbers, the pressure difference in most pores is strong
enough to overcome the capillary pressure needed to push a drop through the
constriction; the number of trapped drops is relatively small, and mobility reduction is weak. Conversely, at low capillary numbers, the number of trapped
drops is large; the mobility reduction is strong and dependent on the drop size
distribution. Additionally, in radial flow, stronger pore-blocking occurs below
a critical capillary number, where capillary resistance surpasses viscous pressure. Flow visualization demonstrates that emulsion flooding improves pore-level displacement efficiency, reducing residual oil saturation. These findings
offer valuable insights into tailoring oil-in-water emulsions for injection into
reservoirs with known pore throat distributions, aiming to achieve the necessary aqueous phase mobility reduction and consequently increase oil recovery
factors.
|
Page generated in 0.0295 seconds