1 |
[en] MODELLING OF FLOW IN POROUS MEDIA / [pt] MODELAGEM PARA ESCOAMENTOS EM MEIOS POROSOSROGERIO MARTINS SALDANHA DA GAMA 04 April 2018 (has links)
[pt] O presente trabalho tem como objetivo a modelagem de escoamentos através de meios porosos, sob o ponto de vista da Teoria Contínua de misturas. O fluido e o sólido, que compõe o meio poroso, são tratados como constituintes contínuos de uma mistura binária, onde não ocorrem reações químicas. Em todas as situações aqui tratadas o fluido é suposto Newtoniano e incompressível, enquanto o meio poroso é rígido, homogêneo e isotrópico. O trabalho pode ser dividido em duas partes principais. Na primeira são modelados escoamentos através de regiões contendo meios porosos saturados e regiões onde só existe o fluido. São discutidas condições de compatibilidade sobre as interfaces, que separam as regiões, e é estabelecido um modelo para escoamentos, nos quais não exista fluxo de massa através das interfaces. A segunda parte trata de escoamentos em meios porosos insaturados, onde é preciso se considerar o efeito de forças capilares. Nesta parte é estabelecido um modelo e são simuladas situações unidimensionais. São estudados vários casos entre eles o enchimento de uma placa porosa, com e sem efeitos de atrito e de forças gravitacionais. A obtenção de resultados, nestes casos, exige a solução numérica de um sistema hiperbólico não-linear de equações diferenciais. / [en] This work aims to a modelling of flow through a porous media based upon the Continuum Theory of Mixtures. The fluid and the solid, which composes the porous media, are assumed as continuous constituent of a binary mixture where chemical reactions do not occur. In all situations here considered, the fluid is assuned Newtonian and incompressíble, while the porous media is rigid, homogeneus and isotropic. This work can be divided in two main parts. In the first one, flows are modelled through regions containing saturated porous media and regions where there is nothing but the fluid. Conditions of compatibility in the interfaces that divide the regions are discussed and a flow modelling is stablished where there are no crosaflow through the interfaces. The second part is concerned with flows in unsaturated porous media, where the effect of capillery pressure is considered. In this Part a model is stablished and unidimensíonal situations are simulated. Several cases are studied and the filling-up of a porous plate is among them,
with and without frictíon effect and gravitational forces. The
obtainment of results, in such cases, requires the numeric
solution of a non-linear hyperbolíc system of differential
equations.
|
2 |
[pt] MECANISMOS QUE GOVERNAM A EFETIVIDADE DE AGENTES OBTURANTES NO CONTROLE DA INVASÃO DE FLUIDOS DE PERFURAÇÃO NA ROCHA RESERVATÓRIO DE PETRÓLEO / [en] THE DRIVING MECHANISMS FOR BRIDGING AGENTS EFFECTIVENESS ON DRILLING FLUIDS INVASION CONTROL INTO OIL RESERVOIR ROCKSALEX TADEU ALMEIDA WALDMANN 06 January 2006 (has links)
[pt] Este estudo procurou observar e quantificar os parâmetros
operacionais que
governam as propriedades permoporosas da torta de
filtração, formada após o
escoamento de uma solução de glicerina com uma determinada
concentração de
sólidos. A formação de um reboco externo de baixa
permeabilidade é um dos
fatores mais importantes para minimizar da invasão do
filtrado de fluido na rocha
reservatório. A contaminação do reservatório pelo filtrado
do fluido pode trazer
vários problemas operacionais, que serão discutidos nesta
dissertação. A eficiência
do sistema de fluidos em minimizar a invasão é normalmente
avaliada através de
ensaios padrão de filtração estática. Neste trabalho dois
objetivos centrais são
definidos: Identificar os parâmetros operacionais que
governam as propriedades
permoporosas do reboco externo através de ensaios de
filtração estática e
disponibilizar uma metodologia para a avaliação da invasão
do filtrado do fluido de
perfuração na geometria poço-reservatório (escoamento
radial), a partir de ensaios
de laboratório de filtração estática (escoamento linear).
Os resultados indicam que
a solução da lei Darcy para o problema de filtração com
formação de torta
incompressível mostrou - se adequada para grande maioria
dos ensaios
experimentais com solução de glicerina contendo agentes
obturantes. O mesmo
não se verificou para ensaios com solução de goma xantana
como meio contínuo.
Os resultados experimentais obtidos mostraram também que,
para uma mesma
solução de glicerina contendo agente obturante, os valores
de permeabilidade da
torta de filtração obtidos na geometria linear e na
geometria radial são
semelhantes. Desta forma, pode - se validar a metodologia
de previsão do grau da
invasão de fluidos de perfuração na rocha reservatório
(configuração radial) a partir
de ensaios convencionais de laboratório (configuração
linear). / [en] This work deals with the understanding of the major
operational parameters
governing filter cake building drilling fluids invasion
through reservoir rocks. The
ability of the fluid system to prevent invasion is
normally evaluated by standardized
static filtration experiments. In these tests, the fluid
is pressurized through a filter
paper or into a consolidated inert porous medium. The
volume which crosses the
porous core is monitored along the time. Darcy flow
modeling of non-compressible
cakes proved to reproduce adequately the filtration of a
Newtonian fluid +
particulate system through ceramic and sinterized steel
disks. Pressure differential,
particle size and shape proved to be relevant parameters
affecting filter cake
permeability and porosity. The present study proposes,
through the coupling of a
linear filtration formulation (lab configuration) and a
radial single phase formulation
(wellbore vicinity), to predict fluid invasion depth of
fluid filtrate in the reservoir rock.
Modeling is validated with linear and radial lab tests.
The proposed methodology is
a requirement for optimum drilling fluid design to be used
in the drilling of reservoir
sections in both exploratory and development wells.
|
3 |
[en] FLOW OF OIL-IN-WATER EMULSIONS THROUGH CONSTRICTED CAPILLARIES / [pt] ESCOAMENTO DE EMULSÕES ÓLEO- ÁGUA ATRAVÉS DE CAPILARES COM GARGANTASYGIFREDO COBOS URDANETA 14 February 2008 (has links)
[pt] O escoamento de emulsões é encontrado em diversos
processos de recuperação e produção de petróleo. O
escoamento de emulsões em meios porosos
depende de diversos parâmetros como a relação do tamanho
das gotas
ao tamanho dos poros, a razão de viscosidades, a vazão
volumétrica e o
efeito destes parâmetros ainda não é bem compreendido.
Uma
análise detalhada
na escala microscópica dos fenômenos envolvidos se faz
essencial
para a melhora do entendimento completo do escoamento de
emulsões em
um reservatório. Isto permitiria o desenvolvimento de
melhores modelos de
simulação para o escoamento multifísico em meios porosos.
Neste trabalho,
o escoamento de emulsões óleo-água através de um capilar
com garganta foi
estudado através de experimentos e teoria. A análise
experimental consistiu
da visualização sob um microscópio do escoamento e da
medição da queda
de pressão em função da vazão para diferentes emulsões. A
análise teórica
englobou o estudo do escoamento em regime permanente de
uma gota de
óleo imersa em água através de um capilar e o estudo do
escoamento transiente
da mesma gota através de um capilar com uma garganta. Os
resultados
mostram que os modelos de escoamento de emulsões em meios
porosos não
devem ser baseados em propriedades macroscópicas da
emulsão quando o
tamanho das gotas da fase dispersa for da mesma ordem de
grandeza do
tamanho dos poros. Neste caso, a queda de pressão é
função
da tensão interfacial,
a razão de viscosidades, a vazão e a razão entre o
tamanho
das gotas
e o diâmetro do poro. Os resultados apresentados neste
trabalho podem ser
usados no projeto de emulsões apropriadas para controle
de
mobilidade em
operações de recuperação avançada através de injeção de
emulsões. / [en] Flow of emulsions is found in many petroleum recovery and
production processes
and it is often referred to in the context of tertiary oil
recovery. The
characteristics of emulsion flow in porous media depend on
several parameters
such as medium drop size to pore size ratio, viscosity
ratio, flow rate
and the effect of these parameters is far from being
entirely understood. A
detailed analysis at a microscopic scale of the flow is
essential to improve
the understanding of flow of an emulsion in a reservoir.
This would lead
to the development of better simulation models, henceforth
increasing the
predictability capability of reservoir simulators for
enhanced oil recovery
applications. In this work, flow of oil-water emulsions
through constricted
capillaries, used as model for the geometry inside a
porous media, is studied
experimentally and theoretically. The experimental
approach consisted
of measuring pressure drop response as a function of flow
rate for different
emulsions and visualizing the flow under an optical
microscope to understand
the phenomena involved. The theoretical approach is
divided in two
parts. First, the immiscible steady flow of a infinite
single drop suspended in
an less viscous fluid through a capillary was analyzed by
solving the Navier-
Stokes equations with the appropriate boundary conditions
for free-surface
flow. The second part of the theoretical analysis
consisted of solving the
transient flow of a drop suspended in a less viscous fluid
through a capillary
with a constriction. It is shown the effect of capillary
number and viscosity
ratio over the main responses of the flow. The results
show that models
of emulsion flow in a porous media cannot be based on the
macroscopic
properties of the emulsion when the drop diameter is of
the same order
of magnitude as the pore throat diameter. In this case
flow rate-pressure
drop is a strong function of the interfacial tension,
viscosity ratio, flow rate
and drop to pore size ratio. The results can be used to
design appropriate
emulsions to control the water mobility during EOR
operations by emulsion
injection.
|
4 |
[en] EMULSION FLOW THROUGH CONSTRICTED CAPILLARY USING LATTICE-BOLTZMANN METHOD / [pt] ESCOAMENTO DE EMULSÕES ATRAVÉS DE CAPILARES COM GARGANTA UTILIZANDO O MÉTODO DE LATTICE-BOLTZMANNMARIANA LUISA DE LIMA TORQUATO 29 January 2016 (has links)
[pt] A injeção de emulsão em meio poroso como método de recuperação avançada pode se tornar realidade na operação de campos de petróleo devido à maior rigidez no descarte de água produzida e aos potenciais ganhos na produção de óleo. Para entender o comportamento macroscópico desta técnica de EOR, é necessário compreender o fenômeno microscópico. Com este objetivo, fez-se a modelagem numérica do escoamento de uma gota imersa em fase contínua escoando em capilar restrito utilizando o método de Lattice-Boltzmann. Este método foi escolhido devido à sua facilidade de ser aplicado em geometrias complexas de rocha e fluido e ao bom compromisso na representação dos fenômenos de microescala. Para entender a influência de cada parâmetro, foram realizadas diversas simulações em domínio tridimensional, alterando a velocidade do fluxo, a razão de viscosidades dos fluidos, a relação entre os diâmetros da gota e do tubo e a magnitude da tensão interfacial. Observou-se que a passagem da gota pela restrição causa uma redução na mobilidade do escoamento, representada por um aumento na perda de carga, pela conjunção dos efeitos viscosos e capilares. Obteve-se correlação negativa do fator redutor de mobilidade 𝑓 com a razão de viscosidade e com o tamanho da gota, assim como fora determinado numericamente por Roca-Reyes (2011) com o método level-set. Foi notada uma pequena sensibilidade de 𝑓 ao número de capilaridade, assim como estabelecido experimentalmente por Robles-Castillo (2011). Verificou-se a importância de se determinar o conjunto adequado de parâmetros do sistema para ter sucesso na implantação de injeção de emulsões. / [en] Emulsion injection in porous medium as an Enhanced Oil Recovery method can turn out to be reality in the operation of onshore and offshore fields, due to increasing rigidity in the disposal of produced water and also due to the potential additional oil production. In order to understand macroscopic behavior of this EOR method, it is necessary to understand the microscopic phenomenon. With this objective, it was performed the numerical modeling of the flow of a droplet immerse in continuous phase through a constricted capillary using the Lattice-Boltzmann method. This method was chosen due to its simplicity on being applied to complex rock geometries and multiphasic flow and due to its good commitment in representing microscopic phenomena. Focusing on understanding the influence of each parameter on flow behavior, several simulation studies were performed altering flow velocity, viscosity ratio, ratio between droplet s and pipe s diameter and interfacial tension. A reduction in mobility is observed as the droplet passes through the restriction caused by the conjunction of viscous and capillary effects. A negative correlation of mobility reduction factor 𝑓 in relation to the viscosity ratio and to droplet size was noticed, as it had been observed before by Roca-Reyes (2011) in a numerical implementation of level-set method. Weak correlation between 𝑓 and capillary number was determined, as in previous experimental essay performed by Robles-Castillo (2011). In this study, it was verified the importance of determining the appropriate set of system parameters, in order to achieve success in the implementation of emulsion injection.
|
5 |
[pt] MECANISMOS EM ESCALA DE POROS DE DESLOCAMENTO DE ÓLEO POR INJEÇÃO DE EMULSÃO / [en] PORE-SCALE MECHANISMS OF OIL DISPLACEMENT BY EMULSION INJECTIONCLARICE DE AMORIM 21 November 2024 (has links)
[pt] A injeção de água é o método mais utilizado para estender a vida produtiva de
reservatórios de petróleo. No entanto, sua eficiência é limitada pela relação de
mobilidade desfavorável entre a fase aquosa injetada e a fase oleosa deslocada.
A heterogeneidade das formações agrava essa questão, direcionando a água
através de caminhos preferenciais, resultando na retenção de óleo residual.
Estudos recentes propõem emulsões de óleo-em-água como agentes de bloqueio
para reduzir a mobilidade da fase aquosa. A redução da mobilidade associada
à captura de gotas da fase dispersa leva a uma frente de deslocamento mais
uniforme, aumentando a recuperação de óleo. Apesar dos avanços recentes
na injeção de emulsões como método de recuperação avançada de petróleo
(EOR), aspectos fundamentais do escoamento de emulsões óleo-em-água a
nível microscópico e sua relação com a redução macroscópica na mobilidade
da fase aquosa ainda necessitam de maior compreensão. Este estudo explora
fatores que influenciam a eficácia de um processo de injeção de emulsão,
incluindo o tamanho das gotas, a distribuição das gargantas de poros e a
vazão de injeção, que influenciam diretamente na redução da mobilidade.
Micromodelos bidimensionais foram empregados para visualizar a dinâmica
de retenção e liberação de gotas, relacionando fenômenos em escala de poros
à mobilidade da fase aquosa. Duas geometrias foram projetadas para este
propósito. O micromodelo linear assegura um gradiente de pressão e uma
velocidade constante ao longo de seu comprimento, enquanto a configuração
radial avalia o desempenho da injeção de emulsão sob diferentes números de
capilaridade. Nesta última configuração, a área de fluxo aumenta com o raio,
reduzindo a velocidade do escoamento à medida que o fluido se afasta do
ponto de injeção. Os resultados mostram que a redução da mobilidade pode
ser controlada pelo número de capilaridade e pela distribuição do tamanho
de gotas. Em números de capilaridade suficientemente altos, a diferença de
pressão na maioria das gargantas de poro supera a pressão capilar, empurrando
as gotas através das constrições. Nestes casos, a retenção de gotas é baixa e a
redução da mobilidade é fraca. Por outro lado, em números de capilaridade
baixos, a retenção de gotas é alta, causando uma redução significativa na
mobilidade da fase aquosa, que é fortemente dependente da distribuição do
tamanho de gotas. Além disso, no fluxo radial, o bloqueio de poros ocorre
abaixo de um número de capilaridade crítico, onde a força capilar supera a
pressão viscosa. O trabalho demonstra que a injeção de emulsão melhora a
eficiência de deslocamento a nível microscópico, reduzindo a saturação residual
de óleo. Os resultados podem orientar a seleção de características específicas
de emulsões a serem injetadas em reservatórios com distribuições conhecidas
de gargantas de poros, visando alcançar a necessária redução na mobilidade
da fase aquosa e, consequentemente, incrementar a recuperação de óleo. / [en] Water injection is the most commonly used method for extending the productive life of oil reservoirs; however, its efficiency is limited by an unfavorable
mobility ratio between the injected aqueous phase and the displaced oil phase.
Reservoir heterogeneity exacerbates this issue, driving water through preferential flow paths with lower capillary resistance, leaving trapped oil behind.
Recent studies propose oil-in-water emulsions as a pore-blocking agent to reduce aqueous phase mobility, leading to a more uniform displacement front
and enhancing oil recovery. Despite recent developments in emulsion injection for enhanced oil recovery (EOR), fundamental aspects of the pore-scale
dynamics of oil-in-water emulsion flow and its correlation with observed macroscopic mobility reduction remain not completely understood. This study
explores key factors influencing the design of an effective emulsion injection
process, including emulsion drop size, pore throat distribution, and injection
flow rate, and their impact on the mobility reduction of the aqueous phase.
Two-dimensional porous media micromodels were employed to visualize drop
dynamics, examining how pore-scale phenomena affect aqueous phase mobility
reduction. Two distinct geometries were designed for this purpose. The linear
micromodel ensures a constant pressure gradient and flow velocity along its
length, while the radial configuration assesses emulsion flooding performance
under varying capillary numbers. In the latter configuration, the flow area increases with the radius, reducing the flow velocity as the fluid moves away
from the injection point. Results show that mobility reduction can be finely
controlled by the capillary number and the drop size distribution. At sufficiently high capillary numbers, the pressure difference in most pores is strong
enough to overcome the capillary pressure needed to push a drop through the
constriction; the number of trapped drops is relatively small, and mobility reduction is weak. Conversely, at low capillary numbers, the number of trapped
drops is large; the mobility reduction is strong and dependent on the drop size
distribution. Additionally, in radial flow, stronger pore-blocking occurs below
a critical capillary number, where capillary resistance surpasses viscous pressure. Flow visualization demonstrates that emulsion flooding improves pore-level displacement efficiency, reducing residual oil saturation. These findings
offer valuable insights into tailoring oil-in-water emulsions for injection into
reservoirs with known pore throat distributions, aiming to achieve the necessary aqueous phase mobility reduction and consequently increase oil recovery
factors.
|
6 |
[pt] ESTIMATIVA DE PARÂMETROS DE RESERVATÓRIOS DE PETRÓLEO A PARTIR DE MODELO TRANSIENTE NÃO ISOTÉRMICO / [en] ESTIMATIVE OF PETROLEUM RESERVOIR PARAMETERS FROM NONISOTHERMAL TRANSIENT MODELWILLER PLANAS GONCALVES 19 May 2021 (has links)
[pt] Tradicionalmente, os testes de formação em poços de petróleo buscam caracterizar o campo de permeabilidades a partir da interpretação dos transientes de pressão (PTA) nos períodos de fluxo e estática baseados em modelos isotérmicos de escoamento em meios porosos. Com o avanço da instrumentação dos testes, registros mais precisos de temperatura passaram a estar disponíveis e fomentaram a pesquisa baseada em modelos não isotérmicos que possibilitaram a análise a partir dos transientes de temperatura (TTA). Além da caracterização de parâmetros do reservatório como permeabilidade e porosidade com a interpretação dos transientes de temperatura, os dados de pressão obtidos a partir de um modelo não isotérmico representa de forma mais fidedigna o fenômeno físico sobretudo quando os testes são submetidos a maiores diferenciais de pressão. Este trabalho consiste no desenvolvimento de um simulador para teste de formação que considera a modelagem não isotérmica de reservatório unidimensional radial acoplado a um poço produtor e na utilização deste simulador, associado a métodos de otimização multivariável, para resolução do problema inverso da caracterização de parâmetros do reservatório. Alguns métodos de otimização foram testados e o algoritmo do Simplex de Nelder-Mead apresentou melhor eficácia. Foram estabelecidos três tipos de problemas e utilizados em três casos hipotéticos considerando inclusive a imposição artificial de ruídos nos sinais de pressão e temperatura utilizados para resolução do problema inverso. / [en] Traditionally, oil well formation tests aim to characterize the reservoir permeability field from pressure transient analysis (PTA) of drawdown and build up based on isothermal flow models in porous media. With the advancement of well test instrumentation, more accurate temperature records became available and have encouraged researches based on non-isothermal models that made possible the temperature transient analysis (TTA). In addition to the characterization of reservoir parameters such as permeability and porosity by TTA, the pressure data obtained from a non-isothermal model represent better the physical phenomenon, especially when the tests are subjected to greater drawdowns. This work consists in the development of a simulator for formation test that considers non-isothermal modeling of a unidimensional radial reservoir coupled to a production well and in the use of this simulator, associated with multivariable optimization methods, to solve the inverse problem of reservoir parameters characterization. Some optimization methods were tested and the Nelder-Mead Simplex algorithm presented better efficiency. Three types of problems were established and used in three hypothetical cases, including artificially imposed noise in pressure and temperature signals used to solve the inverse problem.
|
7 |
[en] INTEGRO-DIFFERENTIAL SOLUTIONS FOR FORMATION MECHANICAL DAMAGE CONTROL DURING OIL FLOW IN PERMEABILITY-PRESSURE-SENSITIVE RESERVOIRS / [pt] SOLUÇÕES ÍNTEGRODIFERENCIAIS PARA CONTROLE DE DANO MECÂNICO À FORMAÇÃO DURANTE ESCOAMENTO DE ÓLEO EM RESERVATÓRIOS COM PERMEABILIDADE DEPENDENTE DA PRESSÃO DE POROSFERNANDO BASTOS FERNANDES 03 February 2022 (has links)
[pt] A Equação da Difusividade Hidráulica Não-Linear (EDHN) modela o escoamento monofásico de fluidos em meios porosos levando em conta a variação das
propriedades da rocha e do fluido presente no interior de seus poros. Normalmente, a solução adimensional da linha-fonte pD(rD, tD) para escoamento de
líquidos é encontrada por meio do uso da transformada de Laplace ou transformação de Boltzmann, o qual, o perfil transiente de pressões em coordenadas
cartesianas é descrito pela função erro complementar erfc(xD, yD, tD) e, em
coordenadas cilíndricas pela função integral exponencial Ei(rD, tD).
Este trabalho propõe a solução analítica pelo método de expansão assíntotica
de primeira ordem em séries, para solução de alguns problemas de escoamento
de petróleo em meios porosos com permeabilidade dependente da pressão
de poros e termo fonte. A solução geral será implementada no software
Matlab (marca registrada)
e a calibração do modelo matemático será realizada comparandose a solução obtida neste trabalho com a solução calculada por meio de um
simulador de fluxo óleo em meios porosos denominado IMEX (marca registrada)
, amplamente
usado na indústria de petróleo e em pesquisas científicas e que usa o método de
diferenças finitas. A solução geral da equação diferencial é dada pela soma da
solução para escoamento de líquidos com permeabilidade constante e o termo
de primeira ordem da expansão assintótica, composto pela não linearidade
devido à variação de permeabilidade. O efeito da variação instantânea de
permeabilidade em função da pressão de poros é claramente demonstrado nos
gráficos diagnósticos e especializados apresentados. / [en] The Nonlinear Hydraulic Diffusivity Equation (NHDE) models the singlephase flow of fluids in porous media considering the variation in the properties
of the rock and the fluid present inside its pores. Normally, the dimensionless linear solution for the flow of oil is performed using the Laplace and
Fourier transform or Boltzmann transformation and provides the unsteady
pressure profile in Cartesian coordinates given by complementary error function erfc(xD, yD, tD) and in cylindrical coordinates described by the exponential integral function Ei(rD, tD).
This work develops a new analytical model based on an integro-differential
solution to predict the formation mechanical damage caused by the permeability loss during the well-reservoir life-cycle for several oil flow problems.
The appropriate Green s function (GF) to solve NHDE for each well-reservoir
setting approached in this thesis is used. The general solution is implemented
in the Matlab (trademark) and the mathematical model calibration will be carried out
by comparing the solution obtained in this work to the porous media finite
difference oil flow simulator named IMEX (trademark). The general solution of the NHDE
is computed by the sum of the linear solution (constant permeability) and the
first order term of the asymptotic series expansion, composed of the nonlinear
effect of the permeability loss. The instantaneous permeability loss effect is
clearly noticed in the diagnostic and specialized plots.
|
Page generated in 0.0403 seconds