Spelling suggestions: "subject:"[een] PERTURBATIVE SOLUTIONS"" "subject:"[enn] PERTURBATIVE SOLUTIONS""
1 |
[en] INTEGRO-DIFFERENTIAL SOLUTIONS FOR FORMATION MECHANICAL DAMAGE CONTROL DURING OIL FLOW IN PERMEABILITY-PRESSURE-SENSITIVE RESERVOIRS / [pt] SOLUÇÕES ÍNTEGRODIFERENCIAIS PARA CONTROLE DE DANO MECÂNICO À FORMAÇÃO DURANTE ESCOAMENTO DE ÓLEO EM RESERVATÓRIOS COM PERMEABILIDADE DEPENDENTE DA PRESSÃO DE POROSFERNANDO BASTOS FERNANDES 03 February 2022 (has links)
[pt] A Equação da Difusividade Hidráulica Não-Linear (EDHN) modela o escoamento monofásico de fluidos em meios porosos levando em conta a variação das
propriedades da rocha e do fluido presente no interior de seus poros. Normalmente, a solução adimensional da linha-fonte pD(rD, tD) para escoamento de
líquidos é encontrada por meio do uso da transformada de Laplace ou transformação de Boltzmann, o qual, o perfil transiente de pressões em coordenadas
cartesianas é descrito pela função erro complementar erfc(xD, yD, tD) e, em
coordenadas cilíndricas pela função integral exponencial Ei(rD, tD).
Este trabalho propõe a solução analítica pelo método de expansão assíntotica
de primeira ordem em séries, para solução de alguns problemas de escoamento
de petróleo em meios porosos com permeabilidade dependente da pressão
de poros e termo fonte. A solução geral será implementada no software
Matlab (marca registrada)
e a calibração do modelo matemático será realizada comparandose a solução obtida neste trabalho com a solução calculada por meio de um
simulador de fluxo óleo em meios porosos denominado IMEX (marca registrada)
, amplamente
usado na indústria de petróleo e em pesquisas científicas e que usa o método de
diferenças finitas. A solução geral da equação diferencial é dada pela soma da
solução para escoamento de líquidos com permeabilidade constante e o termo
de primeira ordem da expansão assintótica, composto pela não linearidade
devido à variação de permeabilidade. O efeito da variação instantânea de
permeabilidade em função da pressão de poros é claramente demonstrado nos
gráficos diagnósticos e especializados apresentados. / [en] The Nonlinear Hydraulic Diffusivity Equation (NHDE) models the singlephase flow of fluids in porous media considering the variation in the properties
of the rock and the fluid present inside its pores. Normally, the dimensionless linear solution for the flow of oil is performed using the Laplace and
Fourier transform or Boltzmann transformation and provides the unsteady
pressure profile in Cartesian coordinates given by complementary error function erfc(xD, yD, tD) and in cylindrical coordinates described by the exponential integral function Ei(rD, tD).
This work develops a new analytical model based on an integro-differential
solution to predict the formation mechanical damage caused by the permeability loss during the well-reservoir life-cycle for several oil flow problems.
The appropriate Green s function (GF) to solve NHDE for each well-reservoir
setting approached in this thesis is used. The general solution is implemented
in the Matlab (trademark) and the mathematical model calibration will be carried out
by comparing the solution obtained in this work to the porous media finite
difference oil flow simulator named IMEX (trademark). The general solution of the NHDE
is computed by the sum of the linear solution (constant permeability) and the
first order term of the asymptotic series expansion, composed of the nonlinear
effect of the permeability loss. The instantaneous permeability loss effect is
clearly noticed in the diagnostic and specialized plots.
|
Page generated in 0.0241 seconds