1 |
[en] AN EVALUATION OF AUTOMATIC FACE RECOGNITION METHODS FOR SURVEILLANCE / [pt] ESTUDO DE MÉTODOS AUTOMÁTICOS DE RECONHECIMENTO FACIAL PARA VÍDEO MONITORAMENTOVICTOR HUGO AYMA QUIRITA 26 March 2015 (has links)
[pt] Esta dissertação teve por objetivo comparar o desempenho de diversos algoritmos que representam o estado da arte em reconhecimento facial a imagens de sequências de vídeo. Três objetivos específicos foram perseguidos: desenvolver um método para determinar quando uma face está em posição frontal com respeito à câmera (detector de face frontal); avaliar a acurácia dos algoritmos de reconhecimento com base nas imagens faciais obtidas com ajuda do detector de face frontal; e, finalmente, identificar o algoritmo com melhor desempenho quando aplicado a tarefas de verificação e identificação. A comparação dos métodos de reconhecimento foi realizada adotando a seguinte metodologia: primeiro, foi criado um detector de face frontal que permitiu o captura das imagens faciais frontais; segundo, os algoritmos foram treinados e testados com a ajuda do facereclib, uma biblioteca desenvolvida pelo Grupo de Biometria no Instituto de Pesquisa IDIAP; terceiro, baseando-se nas curvas ROC e CMC como métricas, compararam-se os algoritmos de reconhecimento; e por ultimo, as análises dos resultados foram realizadas e as conclusões estão relatadas neste trabalho. Experimentos realizados sobre os bancos de vídeo: MOBIO, ChokePOINT, VidTIMIT, HONDA, e quatro fragmentos de diversos filmes, indicam que o Inter Session Variability Modeling e Gaussian Mixture Model são os algoritmos que fornecem a melhor acurácia quando são usados em tarefas tanto de verificação quanto de identificação, o que os indica como técnicas de reconhecimento viáveis para o vídeo monitoramento automático em vídeo. / [en] This dissertation aimed to compare the performance of state-of-the-arte face recognition algorithms in facial images captured from multiple video sequences. Three specific objectives were pursued: to develop a method for determining when a face is in frontal position with respect to the camera (frontal face detector); to evaluate the accuracy for recognition algorithms based on the facial images obtained with the help of the frontal face detector; and finally, to identify the algorithm with better performance when applied to verification and identification tasks in video surveillance systems. The comparison of the recognition methods was performed adopting the following approach: first, a frontal face detector, which allowed the capture of facial images was created; second, the algorithms were trained and tested with the help of facereclib, a library developed by the Biometrics Group at the IDIAP Research Institute; third, ROC and CMC curves were used as metrics to compare the recognition algorithms; and finally, the results were analyzed and the conclusions were reported in this manuscript. Experiments conducted on the video datasets: MOBIO, ChokePOINT, VidTIMIT, HONDA, and four fragments of several films, indicate that the Inter-Session Variability Modelling and Gaussian Mixture Model algorithms provide the best accuracy on classification when the algorithms are used in verification and identification tasks, which indicates them as a good automatic recognition techniques for video surveillance applications.
|
2 |
[en] A FACE RECOGNITION SYSTEM FOR VIDEO SEQUENCES BASED ON A MULTITHREAD IMPLEMENTATION OF TLD / [pt] UM SISTEMA DE RECONHECIMENTO FACIAL EM VÍDEO BASEADO EM UMA IMPLEMENTAÇÃO MULTITHREAD DO ALGORITMO TLDCIZENANDO MORELLO BONFA 04 October 2018 (has links)
[pt] A identificação facial em vídeo é uma aplicação de grande interesse na comunidade cientifica e na indústria de segurança, impulsionando a busca por técnicas mais robustas e eficientes. Atualmente, no âmbito de reconhecimento facial, as técnicas de identificação frontal são as com melhor taxa de acerto quando comparadas com outras técnicas não frontais. Esse trabalho tem como objetivo principal buscar métodos de avaliar imagens em vídeo em busca de pessoas (rostos), avaliando se a qualidade da imagem está dentro de uma faixa aceitável que permita um algoritmo de reconhecimento facial frontal identificar os
indivíduos. Propõem-se maneiras de diminuir a carga de processamento para permitir a avaliação do máximo número de indivíduos numa imagem sem afetar o desempenho em tempo real. Isso é feito através de uma análise da maior parte das técnicas utilizadas nos últimos anos e do estado da arte, compilando toda a informação para ser aplicada em um projeto que utiliza os pontos fortes de cada uma e compense suas deficiências. O resultado é uma plataforma multithread. Para avaliação do desempenho foram realizados testes de carga computacional com o uso de um vídeo público disponibilizado na AVSS (Advanced Video and Signal based Surveillance). Os resultados mostram que a arquitetura promove um
melhor uso dos recursos computacionais, permitindo um uso de uma gama maior de algoritmos em cada segmento que compõe a arquitetura, podendo ser selecionados segundo critérios de qualidade da imagem e ambiente onde o vídeo é capturado. / [en] Face recognition in video is an application of great interest in the scientific community and in the surveillance industry, boosting the search for efficient and robust techniques. Nowadays, in the facial recognition field, the frontal identification techniques are those with the best hit ratio when compared with
others non-frontal techniques. This work has as main objective seek for methods to evaluate images in video to look for people (faces), assessing if the image quality is in an acceptable range that allows a facial recognition algorithm to identify the individuals. It s proposed ways to decrease the processing load to
allow a maximum number of individuals assessed in an image without affecting the real time performance. This is reached through analysis of most the techniques used in the last years and the state-of-the-art, compiling all information to be applied in a project that uses the strengths of each one and offset its shortcomings. The outcome is a multithread platform. Performance evaluation was performed through computational load tests by using public videos available in AVSS ( Advanced Video and Signal based Surveillance). The outcomes show that the architecture makes a better use of the computational resources, allowing use of a wide range of algorithms in every segment of the architecture that can be selected
according to quality image and video environment criteria.
|
3 |
[pt] REDES DE GRAFOS SEMÂNTICOS COM ATENÇÃO E DECOMPOSIÇÃO DE TENSORES PARA VISÃO COMPUTACIONAL E COMPUTAÇÃO GRÁFICA / [en] SEMANTIC GRAPH ATTENTION NETWORKS AND TENSOR DECOMPOSITIONS FOR COMPUTER VISION AND COMPUTER GRAPHICSLUIZ JOSE SCHIRMER SILVA 02 July 2021 (has links)
[pt] Nesta tese, propomos novas arquiteturas para redes neurais profundas utlizando métodos de atenção e álgebra multilinear para aumentar seu desempenho. Também exploramos convoluções em grafos e suas particularidades. Nos concentramos aqui em problemas relacionados à estimativa de pose em tempo real. A estimativa de pose é um problema desafiador em visão computacional com muitas aplicações reais em áreas como realidade aumentada, realidade virtual, animação por computador e reconstrução de cenas 3D. Normalmente, o problema a ser abordado envolve estimar a pose humana 2D ou 3D, ou seja, as partes do corpo de pessoas em imagens ou vídeos, bem como seu posicionamento e estrutura. Diveros trabalhos buscam atingir alta precisão usando arquiteturas baseadas em redes neurais de convolução convencionais; no entanto, erros causados por oclusão e motion blur não são incomuns, e ainda esses modelos são computacionalmente pesados para aplicações em tempo real. Exploramos diferentes arquiteturas para melhorar o tempo de processamento destas redes e, como resultado, propomos dois novos modelos de rede neural para estimativa de pose 2D e 3D. Também apresentamos uma nova arquitetura para redes de atenção em grafos chamada de atenção em grafos semânticos. / [en] This thesis proposes new architectures for deep neural networks with attention enhancement and multilinear algebra methods to increase their performance. We also explore graph convolutions and their particularities. We focus here on the problems related to real-time pose estimation. Pose estimation is a challenging problem in computer vision with many real applications in areas including augmented reality, virtual reality, computer animation, and 3D scene reconstruction. Usually, the problem to be addressed
involves estimating the 2D and 3D human pose, i.e., the anatomical keypoints or body parts of persons in images or videos. Several papers propose approaches to achieve high accuracy using architectures based on conventional convolution neural networks; however, mistakes caused by occlusion and motion blur are not uncommon, and those models are computationally very intensive for real-time applications. We explore different architectures to improve processing time, and, as a result, we propose two novel neural network models for 2D and 3D pose estimation. We also introduce a new architecture for Graph attention networks called Semantic Graph Attention.
|
Page generated in 0.0503 seconds