1 |
[en] SANDSTONE SEISMIC MODELING: EFFECTS OF VELOCITY DISPERSION AND FLUID TYPE / [pt] MODELAGEM SÍSMICA EM ARENITOS: EFEITO DA DISPERSÃO DA VELOCIDADE E DO TIPO DE FLUIDOOLGA CECILIA CARVAJAL GARCIA 11 July 2008 (has links)
[pt] O conhecimento do que acontece no reservatório em produção a partir de variações temporais dos atributos sísmicos devido aos processos dinâmicos vem atingindo um valor crescente na indústria do petróleo, especialmente em arenitos. Este processo possui vários desafios, focados em grande parte a desvendar a superposição dos diferentes efeitos provocados pelas mudanças do reservatório nos dados sísmicos. As propriedades sísmicas são afetadas de maneira complexa por vários fatores, sendo a saturação um dos mais importantes, principalmente em rochas porosas como o arenito. Esta propriedade influencia no módulo elástico da rocha e sua resposta sísmica e, ao mesmo tempo, introduz dispersão da velocidade (variação da velocidade com a freqüência). A transição de fluido efetivo (distribuição homogênea e menores velocidades) para fluido com distribuição heterogênea (e maiores velocidades) estabelece um mecanismo de dispersão presente para freqüências sísmicas in situ, especialmente no arenito. O método mais utilizado para aplicar a técnica de substituição de fluidos se baseia na teoria de Gassmann (1951), que considera o meio poroso estático (estado de isostress), onde o fluido não é afetado
pela perturbação da onda. No entanto, pesquisas mostram que as velocidades acústicas em rochas saturadas de fluido dependem da freqüência, do tipo de fluido e sua distribuição no meio poroso, viscosidade e outras propriedades que tornam as ondas dispersivas. Neste trabalho são realizadas simulações de fluxo de reservatórios, transformações de física de rochas, upscaling e modelagem sísmica em cenários de injeção de gás com o objetivo de esclarecer a importância de levar em conta a dispersão da velocidade na análise time-lapse. Para isso, são analisados para cada modelo mapas de saturação, velocidade, impedância e sismogramas sintéticos (seções de contraste) calculados com as teorias de substituição Gassmann (1951) e Mavko E Jizba (1991). Os resultados mostram que a resposta
sísmica pode ter um incremento de até 15 por cento quando a dispersão devida ao fluxo local é considerada. Porosidade e tortuosidade são parâmetros essenciais que influenciam de maneira diferente na resposta sísmica. / [en] The evaluation of reservoir dynamics during production
through time-lapse
interpretation has reached a substantial importance in the
petroleum industry,
mainly in sandstones. This evaluation presents many
challenges, mainly
concerned to unmask the overlapping of different effects in
seismic data due to
reservoir changes. Several factors affect seismic
properties and saturation is one
of the most important. This property influences the rock
bulk modulus and
seismic response and also causes a velocity dependence on
the frequency. This
phenomenon is known as velocity dispersion. Furthermore,
the transition from
effective homogeneous fluid to heterogeneous saturation
represents a dispersion
mechanism that appears for seismic frequencies in situ in
sandstones. The most
commonly method used to perform the fluid substitution
technique is based in
Gassmann theory (1951). This approach considers a static
porous media (isostress
condition), where fluid is not affected by wave
propagation. However, it is well
known that acoustic velocities in fluid saturated rocks
depends on frequency,
according to fluid type and distribution on porous media,
viscosity, and others
properties that become waves dispersive. In this work
reservoir flow-simulation,
rock physics transformations, upscaling and seismic
modeling were performed in
gas injection scenarios. Synthetic seismograms and some
contrast sections were
generated using Gassmann (1951) and Mavko & Jizba (1991)
substitution
theories. The goal is to clarify the relevance of
considering velocity dispersion on
time-lapse seismic analyzing possible differences in the
seismic parameters.
Results show that seismic response could increase in 15%
when squirt flow
dispersion is considered. Porosity and tortuosity are
essential parameters to
analyze seismic response.
|
2 |
[en] ROCK PHYSICS MODELING EVALUATION FOR CARBONATE RESERVOIRS / [pt] AVALIAÇÃO DE MODELOS DE FÍSICA DE ROCHAS PARA RESERVATÓRIOS CARBONÁTICOSJONATAN DE OLIVEIRA DIAS 06 February 2019 (has links)
[pt] Desde a década de 80, abordagens data-driven têm sido utilizadas para identificação de fluidos e caracterização de reservatórios carbonáticos e siliciclásticos principalmente em relação à análise das amplitudes sísmicas. No entanto, técnicas aplicadas com sucesso para rochas siliciclásticas, como por exemplo: Análise AVO, inversões sísmicas e IDH (Indicadores Diretos de Hidrocarbonetos) revelaram não obter o mesmo êxito para reservatórios carbonáticos heterogêneos. Em contrapartida, diversos artigos
mostram que fluxos de caracterização de reservatórios com modelos de física de rochas incorporados têm alcançado grande sucesso para obtenção de propriedades petrofísicas e atributos elásticos de ambas as rochas, utilizando sísmicas e well logs, em uma abordagem model-driven, focada nas características microestruturais do reservatório. Dessa forma, levando em consideração a importância de se utilizar modelos de física de rochas no escopo da caracterização de reservatórios, dois modelos de física de rochas - Xu e Payne e T-Matrix - foram aplicados, comparados e seus parâmetros foram estocasticamente avaliados e otimizados em um arcabouço Bayesiano. Através dessa abordagem, foi possível estimar, de uma forma confiável, os atributos elásticos de um reservatório carbonático (coquinas) levando em
consideração diversos tipos de incertezas. Além disso, após a calibração e validação de ambos os modelos de física de rochas para diferentes poços, análises de sensibilidade foram realizadas para compreensão de forma quantitativa do comportamento dos atributos elásticos das coquinas em relação às alterações do conteúdo mineralógico, tipos de poro e fluidos desse reservatório. / [en] Since the 80 s, data-driven approaches have been used for fluids identification and reservoir characterization of siliciclastic and carbonate rocks mainly regarding seismic amplitudes analyses. However, techniques successfully applied for siliciclastic rocks, such as: AVO analysis, seismic inversions and DHI (Direct Hydrocarbon Indicators) ranking revealed not have achieved the same outstanding and reliable results for heterogeneous carbonate rocks. On the other hand, several articles demonstrate that
reservoir characterization workflows with rock physics models embedded have been reaching a robust success in order to obtain petrophysical properties and elastic attributes of both rocks, from the seismic and well logs, in a model-driven approach focused on the reservoirs microstructural information. In this way, taking into account the importance of applying rock physics models in the scope of reservoir characterization, two rock physics models - Xu and Payne and T-Matrix - were applied, compared
and their parameters were stochastically evaluated and optimized in a Bayesian framework. Through this approach, it was possible to estimate, in a reliable manner, the elastic attributes of a carbonate reservoir (coquinas) taking into consideration different kinds of uncertainties. Furthermore, after the calibration in the well location and validation of both rock physics models for other wells, sensitivity analyses were conducted in order to quantitatively understand how the coquinas elastic attributes behave regarding the variations in the reservoir mineralogical content, pore shapes and fluids.
|
3 |
[en] 4D SEISMIC, GEOMECHANICS AND RESERVOIR SIMULATION INTEGRATED STUDY APPLIED TO SAGD THERMAL RECOVERY / [pt] ESTUDO INTEGRADO DE SÍSMICA 4D, GEOMECÂNICA E SIMULAÇÃO DE RESERVATÓRIOS APLICADO A PROCESSOS DE RECUPERAÇÃO TÉRMICA SAGDPAUL RICHARD RAMIREZ PERDOMO 26 October 2017 (has links)
[pt] As reservas de óleos pesados têm obtido grande importância devido à diminuição das reservas de óleos leves e ao aumento dos preços do petróleo. Porém, precisa-se de aumentar a viscosidades destes óleos pesados para que possam fluir até superfície. Para reduzir a viscosidade foi escolhida a técnica de recuperação térmica SAGD (Steam Assisted Gravity Drainage) pelos seus altos valores de recobro. A redução da viscosidade é atingida pela transmissão de calor ao óleo pela injeção de vapor, porém uma parte deste calor é transmitida à rocha. Esta transmissão de calor junto com a produção de óleo geram uma variação no estado de tensões no reservatório o que por sua vez geram fenômenos geomecânicos. Os simuladores convencionais avaliam de uma forma muito simplificada estes fenômenos geomecânicos, o que faz necessários uma abordagem mais apropriada que acople o escoamento dos hidrocarbonetos e a transmissão de calor com a deformação da rocha. As mudanças no reservatório, especialmente a variação da saturação, afetam as propriedades sísmicas da rocha, as quais podem ser monitoradas para acompanhar o avanço da frente de vapor. A simulação fluxo-térmica-composicional-geomecânica é integrada à sísmica de monitoramento 4D da injeção de vapor (a través da física de rochas). Existe uma grande base de dados, integrada por propriedades dos fluidos do reservatório (PVT) (usado no arquivo de entrada de simulação de fluxo) e uma campanha de mecânica das rochas. Foram simulados vários cenários geomecânicos considerando a plasticidade e variação da permeabilidade. Foram avaliadas várias repostas geomecânicas e de propriedades de fluidos no pico de pressão e final do processo SAGD. A resposta geomecânica pode ser observada, porém foi minimizada devido à baixa pressão de injeção, sendo o mecanismo de transmissão de calor um fator importante na produção de óleo (pela redução da viscosidade) e a separação vertical entre poços. Foi também significativa à contribuição da plasticidade no aumento da produção de hidrocarbonetos. A impedância acústica foi calculada usando a Equação de substituição de fluidos de Gassmann. Os sismogramas sintéticos de incidência normal (para monitorar o avanço da frente o câmara de vapor) mostraram a área afetada pela injeção de vapor, porém com pouca variação devida principalmente à rigidez da rocha. / [en] The heavy oil reserves have gained importance due to the decreasing of the present light oil reserves. Although it is necessary to reduce the oil viscosity and makes it flows to surface. For its high recovery factor the SAGD (Steam Assited Gravity Drainage) thermal process was selected. The viscosity reduction is achieved by heat transfer from steam to oil, but some part of this heat goes to rock frame. This heat transfer together with oil production change the initial in-situ stress field what creates geomechanical effects. The conventional flux simulators have a very simplified approach of geomechanical effects, so it is necessary to consider a more suitable approach that considers the coupling between oil flux and heat transfer with rock deformation. The changes within the reservoir, specially the saturation change, affect the seismical rock properties which can be used to monitor the steam chamber growth. The flux-thermal geomechanics is integrated to steam chamber monitoring 4D seismic (through the rock physics). There is a great data base, integrated by reservoir fluid properties (PVT) (used in reservoir simulation dataset) and a rock mechanics campaign. Several scenaries were simulated considering the plasticity and permeability variation. Several geomechanical responses and flux properties at peak pressure and end of SAGD process were evaluated. The geomechanical response can be observed, but was minimized due to low steam injection pressure, being the heat transfer an important in oil production (for the viscosity reduction) and the vertical well separation, too. The plasticity has a significant contribution in the increment of oil production. Acoustic impedance was calculated by using Gassmann fluid substitution approach. 2D Synthetic seismograms, normal incidence (to monitor the steam camera front advance), showed the area affected by steam injection, but with little variation due principally to rock stiffness.
|
Page generated in 0.0434 seconds