1 |
[en] A STRUCTURED CONTINUATION METHOD FOR PROBLEMS WITH MULTIPLE SOLUTIONS / [pt] UM MÉTODO DE CONTINUAÇÃO ESTRUTURADO PARA PROBLEMAS COM MÚLTIPLAS SOLUÇÕESDIEGO SOARES MONTEIRO DA SILVA 07 December 2021 (has links)
[pt] Seja F uma função definida de um espaço de Banach real X para um espaço de Banach real Y e g um ponto pertencente a Y. Descrevemos um algoritmo para calcular as soluções u da equação F de u igual a g. Inicialmente, o algoritmo parte de uma curva c no domínio, a qual é escolhida de modo a interceptar substancialmente o conjunto crítico de F. Calculamos através de métodos de continuação uma componente da imagem inversa de F de c e definimos essa componente de forma abstrata: grafo completamente espelhado. Claramente, os métodos de continuação padrão têm melhores chances de sucesso em diferentes pontos iniciais. Fornecemos argumentos geométricos para a abundância ocasional de soluções e uma busca estruturada dessas. Três exemplos são considerados detalhadamente. O primeiro é uma função do plano no plano, em que podemos validar os resultados com auxílio de um software. O segundo conjunto de exemplos é obtido a partir da discretização de um problema de Sturm-Liouville não linear com um número inesperado de soluções. Por último, calculamos as seis soluções aproximadas de um problema estudado por Solimini. / [en] Let F be a definite function from a real Banach space X to a real Banach space Y and g a point belonging to Y. We describe an algorithm for calculating the solutions u of the equation F of u equal to g. Initially, the algorithm starts from a curve c in the domain, which is chosen so as to substantially intercept the critical set of F. We calculate through continuation methods a component of the inverse image of F of c and define this component in an abstract way: graph completely mirrored. Clearly, standard continuation methods have better chances of success at different starting points. We provide geometric arguments for the occasional abundance of solutions and a structured search for these. Three examples are considered in detail. The first is a function of the plan in the plan, in which we can validate the results with the help of software. The second set of examples is obtained from the discretization of a non-linear Sturm-Liouville problem with an unexpected number of solutions. Finally, we calculate the six approximate solutions of a problem studied by Solimini.
|
2 |
[en] AN EXCURSION IN THE DYNAMICS OF FLEXIBLE BEAMS: FROM MODAL ANALYSIS TO NONLINEAR MODES / [pt] UMA EXCURSÃO NA DINÂMICA DE VIGAS FLEXÍVEIS: DE ANÁLISE MODAL A MODOS NÃO LINEARESGUSTAVO BRATTSTROEM WAGNER 24 November 2022 (has links)
[pt] Vigas flexíveis são encontradas com cada vez mais frequência em diferentes indústrias, uma vez que novos projetos têm buscado por estruturas mais
longas e leves. Isso pode ser uma consequência direta das novas demandas
estruturais nos projetos, ou uma simples consequência do engajamento das indústrias em programas de redução de custo (utilização de menos materiais).
Em geral, vigas flexíveis são modeladas sob hipóteses de grandes deslocamentos, grandes rotações, mas com pequenas deformações. Essas hipóteses permitem que o equacionamento da dinâmica de vigas flexíveis seja feito através de
elementos finitos co-rotacionais. A formulação co-rotacional decompõe o movimento das estruturas flexíveis em duas partes: uma contendo o movimento de
corpo rígido e outra com uma (pequena) deformação elástica. Dessa forma, a
não-linearidade geométrica causada pelos grandes deslocamentos e rotações das
seções transversais das vigas podem ser computadas de forma eficiente. Uma
das inovações dessa tese é o uso direto das equações de movimentos geradas pelos elementos finitos co-rotacionais no cálculo dos modos normais não-lineares
(MNNs). Até agora, a maioria das análises dinâmicas com elementos finitos
co-rotacionais foram restritas à integração das equações de movimento. O conhecimento de MNNs é útil na análise de sistemas não-lineares pois permitem
um detalhado entendimento das vibrações nos regimes não-lineares. Com eles,
pode-se, por exemplo, prever comportamentos de enrijecimento/relaxamento,
localização de respostas, interação entre modos, existência de isolas, etc. A
definição de Rosenberg sobre MNNs como sendo soluções periódicas (não necessariamente síncronas) do sistema é adotado na tese. Os métodos do Balanço
Harmônico e do Tiro são apresentados e utilizados no cálculo de soluções periódicas de sistemas não-lineares. Um procedimento de continuação numérica
é implementado para computar os MNN eficientemente para diferentes níveis
de energia. Exemplos numéricos mostram a capacidade do método proposto
quando aplicado aos elementos finitos co-rotacionais. / [en] Flexible beams are becoming ubiquitous in several industrial applications, as new projects often aim for lighter and longer structures. This fact is
directly related to the new challenging demands on structural performances,
or it is a simple consequence of the engagement of industries in cost reduction
programs (usage of less material). Flexible beams are usually modeled under
the assumption of large displacements, finite rotations, but with small strains.
Such hypotheses allow the equation of motion to be built using co-rotational
finite elements. The co-rotational formulation decomposes the total motion of
a flexible structure into two parts: a rigid body displacement and an elastic
(small) deformation. This way, the geometric nonlinearity caused by the large
displacements and rotations of the beam s cross sections can be efficiently computed. One of the novelties of this thesis is the direct usage of the equation of
motion generated by a co-rotational finite element formulation in the computation of nonlinear normal modes (NNM). So far, most of the dynamic analyses
with co-rotation finite element models were restricted to numerical integrations of the equation of motion. The knowledge of NNMs can be beneficial in the
analysis of any nonlinear structure since it allows a thoroughly understanding
of the vibratory response in the nonlinear regime. They can be used, for example, to predict a hardening/softening behavior, a localization of the responses,
the interactions between modes, the existence of isolas, etc. The Rosenberg s
definition of NNM as periodic solutions (non-necessarily synchronous motion)
is adopted here. The Harmonic Balance method and the Shooting methods
are presented and used to compute periodic solutions of nonlinear systems.
A numerical path continuation scheme is implemented to efficiently compute
NNMs at different energy levels. Numerical examples show the capability of
the proposed method when applied to co-rotational beam elements.
|
Page generated in 0.0463 seconds