• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] COMPARATIVE STUDY OF NUMERICAL METHODS FOR SOLVING THE ELASTICITY EQUATIONS IN TOPOLOGY OPTIMIZATION PROBLEMS / [pt] ESTUDO COMPARATIVO DE MÉTODOS NUMÉRICOS PARA SOLUÇÃO DAS EQUAÇÕES DA ELASTICIDADE EM PROBLEMAS DE OTIMIZAÇÃO TOPOLÓGICA

ANDRÉS JOSÉ RODRÍGUEZ TORRES 07 March 2017 (has links)
[pt] Este trabalho apresenta um estudo comparativo de métodos numéricos para solução das equações da elasticidade em problemas de otimização topológica. Um sistema computacional é desenvolvido em MATLAB para solução de problemas de otimização topológica usando malhas poligonais não estruturadas em domínios bidimensionais arbitrários. Dois métodos numéricos são implementados e comparados com o método dos elementos finitos (FEM) em relação à precisão e à eficiência computacional: o recém proposto Método dos Elementos Virtuais (VEM) e o Método dos Elementos Finitos Suavizados (SFEM). A principal característica que distingue estes métodos do FEM é que as funções de base canônicas não são obtidas de forma explícita. A utilização de projetores locais apropriados permite a extração do componente linear das deformações dos elementos e, por conseguinte, o cálculo da matriz de rigidez se reduz a avaliações de quantidades puramente geométricas. Exemplos numéricos representativos, usando malhas convexas e não convexas, para minimização da flexibilidade são apresentados para ilustrar as potencialidades dos métodos estudados. / [en] This work presents a comparative study of numerical methods for solving the elasticity equations in topology optimization problems. A computational framework is developed in MATLAB for solving topology optimization problems using unstructured polygonal meshes in arbitrary two-dimensional domains. Two numerical methods are implemented and compared with the finite element method (FEM) with respect to accuracy and computational efficiency: the recentlyproposed Virtual Element Method (VEM) and the Smoothed Finite Element Method (SFEM). The key characteristic that distinguish these methods from the FEM is that the canonical basis functions are not computed explicitly. The use of appropriate local projection maps allows the extraction of the linear component of the element deformations and, therefore, the computation of the stiffness matrix is reduced to the evaluation of purely geometric quantities. Representative numerical examples, using convex and non-convex meshes, for compliance minimization are presented to illustrate the capabilities of the methods studied.
2

[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS GEOMETRICAMENTE NÃOLINEARES BASEADA EM UM ESQUEMA DE INTERPOLAÇÃO DE ENERGIA / [en] TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES BASED ON AN ENERGY INTERPOLATION SCHEME

ANDRE XAVIER LEITAO 26 May 2020 (has links)
[pt] Em muitos problemas de engenharia, e.g., no projeto de próteses biomédicas flexíveis ou em dispositivos de absorção de energia, estruturas sofrem grandes deslocamentos. Nestes casos, a não linearidade geométrica deve ser levada em conta na resposta estrutural. Contudo, algoritmos de otimização topológica considerando não linearidades, e modelados segundo o método de elementos finitos, sofrem instabilidades numéricas causadas por distorções excessivas nas regiões de baixa densidade dentro do domínio de projeto. Em particular, a matriz de rigidez pode não ser positiva definida comprometendo a convergência do processo de otimização. Esta dissertação visa estudar um esquema de interpolação entre as formulações lineares e não lineares de elementos finitos para aliviar tais distorções. Em cada etapa da otimização, para determinar a configuração de equilíbrio, o sistema de equações não-lineares é resolvido pelo procedimento de Newton-Raphson. Utilizando-se das informações dos gradientes calculadas através do método adjunto, o Método das Assíntotas Móveis é empregado para atualizar as variáveis de projeto. Por meio de problemas de referência considerando grandes deslocamentos, são demonstradas a eficácia e a eficiência deste esquema de interpolação. Mais especificamente, as topologias otimizadas estão de acordo com aquelas obtidas na literatura e exibem a dependência esperada em relação ao nível de carga. O esquema de interpolação em estudo desempenha papel crucial na solução de problemas não lineares em níveis elevados de carga, permitindo que a rotina de otimização convirja e se obtenha a distribuição de material ótima. / [en] In many engineering problems, e.g., design of flexible biomedical prostheses or energy absorption devices, structures undergo large displacements. In those problems, the structural response must take into account the geometric nonlinearity. However, topology optimization algorithms regarding nonlinearities, and based on the finite element method, typically suffer from numerical instabilities caused by excessive distortions of low-density regions within the design domain. In particular, the stiffness matrix may be no longer positive definite, which can jeopardize the convergence of the optimization process. This thesis aims to study an interpolation scheme between linear and nonlinear finite element formultation to alleviate this convergence issue. At each step of the optimization, the nonlinear state equation is solved by the Newton-Raphson procedure to determine the equilibrium configuration. Making use of the gradient information computed from the adjoint method, the Method of Moving Asymptotes is employed to update the design variables. Through several benchmark problems considering large displacements, it is demonstrated the effectiveness and efficiency of this interpolation scheme. More specifically, the optimized designs are in agreement with those obtained in the literature and exhibit correct load-level dependence. The investigated interpolation scheme plays a crucial role in the solution of nonlinear problems with high load levels, allowing the optimization routine to converge and to obtain the optimal material arrangement.

Page generated in 0.3265 seconds