• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-motion detection by optical coherence tomography (OCT) and its clinical applications

Guan, Guangying January 2015 (has links)
Detection of micro-motion on biological tissues has various applications such as ultrasound elastography and magnetic resonance elastography (MRE). Ultrasound transducers, the most commonly used tool to detect endogenous and exogenous micro-motions, have a number of drawbacks: including the requirements of the physical contact with the sample and limited spatial resolution (millimetre scale). The aim of this thesis is to develop a non-contact phase-sensitive imaging technique which is suitable for functional imaging in the micron range which also has the potential for quantitative analysis of relative properties resulting from an appropriate image processing. Concerning imaging techniques, this thesis focused on optical coherence tomography (OCT) and in particular on phase-sensitive optical coherence tomography (PhS-OCT). In this thesis, a PhS-OCT system is developed for micro-motion detection and a dual camera PhS-OCT system is developed to double the imaging acquiring speed and improve the sensitivity to small phase change. Two applications of PhS-OCT combining micro-motions detection are preformed: 1) Photo-thermal OCT (PT-OCT) system is developed to detect the photo-thermal phenomenon of nanoparticles. A mathematic model is proposed to analyse and reconstruct the distribution of nanoparticles in biological tissues. 2) A quantitative 3D optical coherence elastography (OCE) system and algorithm are developed to analysis the mechanical property of tissue. A feasibility study is carried for the diagnosis of prostate cancer (PCa) using this technique. Results show that PhS-OCT is a powerful tool for the detection of micro-motions (micron range). Functional OCT based on it such as PT-OCT and OCE offers potential in diagnostic and therapeutic in clinical applications, e.g. PT-OCT can be used to detect and map the distribution and concentration of dye and drug in tissues or organs. 3D OCE can provide useful information for early localization and diagnosis of cancer.
2

[pt] FONTES ÓPTICAS PARA TOMOGRAFIA DE COERÊNCIA ÓPTICA DE ALTA RESOLUÇÃO / [en] OPTICAL SOURCES FOR HIGH-RESOLUTION OPTICAL COHERENCE TOMOGRAPHY

ANDREW HENRY CORDES 10 November 2021 (has links)
[pt] Foram desenvolvidas fontes ópticas para obtenção de imagens por tomografia de coerência óptica com alta resolução. Dois tipos de abordagens foram realizados, uma com um laser contínuo sintonizável, que neste trabalho foi instrumentado com marcadores de frequência óptica, outra com uma fonte óptica pulsada de banda larga. Mediante um processo de calibricação desenvolvido neste trabalho, a fonte contínua forneceu resoluções de 8 μm e alcances até 0,5 mm, enquanto que a fonte pulsada forneceu resoluções de 3 μm e alcances de 300 μm. A fonte pulsada permitiu ainda a obtenção de imagens em tempo real com capacidade de captura de movimento do objeto. / [en] Optical sources to obtain images through high resolution optical coherence tomography were developed. Two approaches were taken, one with a continuously tunable external cavity laser which, in this work, was modified to produce optical frequency markers, the other with an ultra-wideband pulsed source. Using a calibration process we developed in this work the continuously tunable source continued to achieve resolutions 8 μm and ranges of 0.5 mm, while the pulsed source achieved resolutions of 3.3 μm and ranges of 300 μm. The pulsed source has the capacity to capture real time images.

Page generated in 0.0518 seconds