• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] OTIMIZAÇÃO DE TRAJETÓRIAS PARA ROBÔS HÍBRIDOS COM PERNAS E RODAS EM TERRENOS ACIDENTADOS / [en] TRAJECTORY OPTIMIZATION FOR HYBRID WHEELED-LEGGED ROBOTS IN CHALLENGING TERRAIN

10 November 2020 (has links)
[pt] Robôs híbridos equipados com pernas e rodas são uma solução promissora para uma locomoção versátil em terrenos acidentados. Eles combinam a velocidade e a eficiência das rodas com a capacidade das pernas de atravessar terrenos com obstáculos. Em geral, os desafios em locomoção para robôs híbridos envolvem planejamento de trajetória e sistemas de controle para o rastreamento da trajetória planejada. Esta tese se concentra, em particular, na tarefa de otimização de trajetória para robôs híbridos que navegam em terrenos acidentados. Para isso, propõe-se um algoritmo de planejamento que otimiza a posição e a orientação da base do robô e as posições e forças de contato nas rodas em uma formulação única, levando em consideração as informações do terreno e a dinâmica do robô. O robô é modelado como um único corpo rígido com massa e inércia concentrada no centro de massa, o que permite planejar movimentos complexos por longos horizontes de tempo e ainda manter uma baixa complexidade computacional para resolver a otimização de forma mais eficiente. O conhecimento do mapa do terreno permite que a otimização gere trajetórias para negociação de obstáculos de maneira dinâmica, em velocidades mais altas. Tais movimentos não podem ser gerados sem levar em consideração as informações do terreno. Duas formulações diferentes são apresentadas, uma que permite movimentos somente com as rodas, onde a negociação de obstáculos é permitida pelas pernas, e outra focada em movimentos híbridos dando passos e movendo as rodas, capazes de lidar com descontinuidades no perfil do terreno. A otimização é formulada como um NLP e as trajetórias obtidas são rastreadas por um controlador hierárquico que computa os comandos de atuação de torque para as juntas e as rodas do robô. As trajetórias são verificadas no robô quadrúpede ANYmal equipado com rodas não esterçáveis controladas por torque, em simulações e testes experimentais. O algoritmo proposto de otimização de trajetória permite que robôs com pernas e rodas naveguem por terrenos complexos, contendo, por exemplo, degraus, declives e escadas, enquanto negociam esses obstáculos com movimentos dinâmicos. / [en] Wheeled-legged robots are an attractive solution for versatile locomotion in challenging terrain. They combine the speed and efficiency of wheels with the ability of legs to traverse challenging terrain. In general, the challenges with wheeled-legged locomotion involve trajectory generation and motion control for trajectory tracking. This thesis focuses in particular on the trajectory optimization task for wheeled-legged robots navigating in challenging terrain. For this, a motion planning framework is proposed that optimizes over the robot’s base position and orientation, and the wheels’ positions and contact forces in a single planning problem, taking into account the terrain information and the robot dynamics. The robot is modeled as a single rigid-body, which allows to plan complex motions for long time horizons and still keep a low computational complexity to solve the optimization quickly. The knowledge of the terrain map allows the optimizer to generate feasible motions for obstacle negotiation in a dynamic manner, at higher speeds. Such motions cannot be discovered without taking into account the terrain information. Two different formulations allow for either purely driving motions, where obstacle negotiation is enabled by the legs, or hybrid driving-walking motions, which are able to overcome discontinuities in the terrain profile. The optimization is formulated as a Nonlinear Programming Problem (NLP) and the reference motions are tracked by a hierarchical whole-body controller that computes the torque actuation commands for the robot. The trajectories are verified on the quadrupedal robot ANYmal equipped with non-steerable torque-controlled wheels in simulations and experimental tests. The proposed trajectory optimization framework enables wheeled-legged robots to navigate over challenging terrain, e.g., steps, slopes, stairs, while negotiating these obstacles with dynamic motions.
2

[pt] FRAMEWORK DE INTEGRAÇÃO DE OTIMIZAÇÃO DE TRAJETÓRIAS OFF-LINE E CONTROLE PREDITIVO ON-LINE PARA ROBÔS COM PERNAS / [en] INTEGRATION FRAMEWORK FOR OFFLINE TRAJECTORY OPTIMIZATION AND ONLINE MODEL PREDICTIVE CONTROL FOR LEGGED ROBOTS

LEONARDO GARCIA MORAES 03 December 2024 (has links)
[pt] Na última década, os robôs móveis com pernas ganharam notoriedade por sua capacidade de se movimentar com segurança em terrenos acidentados e superar obstáculos, como declives e escadas, podendo ser utilizados em mais aplicações em comparação com os robôs móveis com rodas. Novos desenvolvimentos que melhorem a robustez do planejamento de trajetória e o controle dinâmico de robôs com pernas são cruciais para o avanço desse campo. O objetivo deste trabalho é desenvolver um framework baseado em C++ e ROS Noetic que integre otimização de trajetória off-line para robôs com pernas com Model Predictive Control (MPC) on-line, considerando o mapa de elevação do terreno. A otimização de trajetória é baseada na biblioteca de código aberto TOWR (Trajectory Optimization for Walking Robots), que emprega uma função contínua para representar o mapa do terreno. Para tornála mais genérica, foi implementada uma interface que permite que mapas de elevação 2,5D sejam usados como representação do terreno. Além disso, as trajetórias geradas pelo TOWR são fornecidas como referências para um controlador MPC baseado na biblioteca de código aberto OCS2. As trajetórias otimizadas pelo MPC são então rastreadas por um Whole-Body Controller (WBC), que calcula os torques de atuação das juntas do robô. A estrutura é validada em simulações usando a dinâmica completa do robô, com diferentes tipos de terreno e sob perturbação externa. / [en] In the last decade, legged mobile robots have gained notoriety for their ability to move safely over rough terrain and overcome obstacles such as slopes and stairs, opening up new applications compared to wheeled mobile robots. New developments that improve the robustness of trajectory planning and dynamic control of legged robots are crucial for the advancement of this field. The aim of this work is to develop a framework based in C++ and ROS Noetic that integrates offline trajectory optimization for legged robots with online Model Predictive Control (MPC) while taking into account the elevation map of the terrain. The trajectory optimization is based on the open-source library TOWR (Trajectory Optimization for Walking Robots), which employs a continuous function to represent the map of the terrain. To make it more generic, an interface was implemented to allow 2.5D elevation maps to be used as terrain representation. Furthermore, the trajectories generated by TOWR are provided as references for a MPC implemented based on the open-source library OCS2. The trajectories optimized by the MPC are then tracked by a weighted Whole-Body Controller (WBC), which computes the actuation torques for the robot s joints. The framework is validated in simulations using the full dynamics of the robot, with different terrain types and under external disturbance.

Page generated in 0.0352 seconds