• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] DEVELOPMENT OF UNIMODAL AND MULTIMODAL OPTIMIZATION ALGORITHMS BASED ON MULTI-GENE GENETIC PROGRAMMING / [pt] DESENVOLVIMENTO DE ALGORITMOS DE OTIMIZAÇÃO UNIMODAL E MULTIMODAL COM BASE EM PROGRAMAÇÃO GENÉTICA MULTIGÊNICA

ROGERIO CORTEZ BRITO LEITE POVOA 29 August 2018 (has links)
[pt] As técnicas de programação genética permitem flexibilidade no processo de otimização, possibilitando sua aplicação em diferentes áreas do conhecimento e fornecendo novas maneiras para que especialistas avancem em suas áreas com mais rapidez. Parameter mapping approach é um método de otimização numérica que utiliza a programação genética para mapear valores iniciais em parâmetros ótimos para um sistema. Embora esta abordagem produza bons resultados para problemas com soluções triviais, o uso de grandes equações/árvores pode ser necessário para tornar este mapeamento apropriado em sistemas mais complexos.A fim de aumentar a flexibilidade e aplicabilidade do método a sistemas de diferentes níveis de complexidade, este trabalho introduz uma generalização utilizando a programação genética multigênica, para realizar um mapeamento multivariado, evitando grandes estruturas complexas. Foram considerados três conjuntos de funções de benchmark, variando em complexidade e dimensionalidade. Análises estatísticas foram realizadas, sugerindo que este novo método é mais flexível e mais eficiente (em média), considerando funções de benchmark complexas e de grande dimensionalidade. Esta tese também apresenta uma abordagem do novo algoritmo para otimização numérica multimodal.Este segundo algoritmo utiliza algumas técnicas de niching, baseadas no procedimento chamado de clearing, para manter a diversidade da população. Um conjunto benchmark de funções multimodais, com diferentes características e níveis de dificuldade,foi utilizado para avaliar esse novo algoritmo. A análise estatística sugeriu que esse novo método multimodal, que também utiliza programação genética multigênica,pode ser aplicado para problemas que requerem mais do que uma única solução. Como forma de testar esses métodos em problemas do mundo real, uma aplicação em nanotecnologia é proposta nesta tese: ao timização estrutural de fotodetectores de infravermelho de poços quânticos a partir de uma energia desejada. Os resultados apresentam novas estruturas melhores do que as conhecidas na literatura (melhoria de 59,09 por cento). / [en] Genetic programming techniques allow flexibility in the optimization process, making it possible to use them in different areas of knowledge and providing new ways for specialists to advance in their areas more quickly and more accurately.Parameter mapping approach is a numerical optimization method that uses genetic programming to find an appropriate mapping scheme among initial guesses to optimal parameters for a system. Although this approach yields good results for problems with trivial solutions, the use of large equations/trees may be required to make this mapping appropriate for more complex systems.In order to increase the flexibility and applicability of the method to systems of different levels of complexity, this thesis introduces a generalization by thus using multi-gene genetic programming to perform a multivariate mapping, avoiding large complex structures.Three sets of benchmark functions, varying in complexity and dimensionality, were considered. Statistical analyses carried out suggest that this new method is more flexible and performs better on average, considering challenging benchmark functions of increasing dimensionality.This thesis also presents an improvement of this new method for multimodal numerical optimization.This second algorithm uses some niching techniques based on the clearing procedure to maintain the population diversity. A multimodal benchmark set with different characteristics and difficulty levels to evaluate this new algorithm is used. Statistical analysis suggested that this new multimodal method using multi-gene genetic programming can be used for problems that requires more than a single solution. As a way of testing real-world problems for these methods, one application in nanotechnology is proposed in this thesis: the structural optimization of quantum well infrared photodetector from a desired energy.The results present new structures better than those known in the literature with improvement of 59.09 percent.

Page generated in 0.0411 seconds