• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] POROSITY CHARACTERIZATION OF IRON ORE PELLETS BY X-RAY MICROTOMOGRAPHY / [pt] MICROTOMOGRAFIA COMPUTADORIZADA DE RAIOS X APLICADA À CARACTERIZAÇÃO DE POROSIDADE EM PELOTAS DE MINÉRIO DE FERRO

KAREN SOARES AUGUSTO 19 April 2017 (has links)
[pt] As pelotas de minério de ferro são uma das principais matérias-primas, juntamente com o minério granulado e o sínter, do processo de fabricação do aço. São produzidas pelo processo de pelotização, aproveitando a parcela ultrafina do minério, que antes era considerada rejeito do processo de beneficiamento. A porosidade gerada no processo de fabricação das pelotas é uma importante característica do material, pois permite o fluxo interno de gases, aumentando a sua redutibilidade e consequentemente a eficiência do processo. Por outro lado, a porosidade afeta a resistência física das pelotas, que precisam suportar todos os esforços sofridos durante as operações de manuseio, transporte e dos processos metalúrgicos. Dessa forma, a quantidade, tamanho, forma e a distribuição espacial dos poros são características importantes no controle de qualidade das pelotas, que são produzidas em grande escala e vem ganhando cada vez mais importância nas usinas siderúrgicas. Tradicionalmente, as técnicas analíticas mais utilizadas na caracterização da porosidade desses materiais são porosimetria por intrusão de mercúrio (PIM) e microscopia ótica (MO). A PIM só permite avaliar poros que estão conectados à superfície, além de utilizar o mercúrio que é um material volátil e tóxico, que oferece riscos ao meio ambiente e à saúde humana. A MO é limitada ao espaço bidimensional, podendo trazer informações pouco representativas. Ambas as técnicas são destrutivas, podendo degradar o material no processo de preparação e também impossibilitando análises posteriores numa mesma amostra. O presente trabalho propõe desenvolver uma metodologia de caracterização tridimensional de porosidade em pelotas de minério de ferro, envolvendo a técnica de microtomografia de raios X (MicroCT) e análise de imagens, a fim de estudar separadamente os diferentes tipos de poros (abertos e fechados), e comparar com as técnicas clássicas citadas anteriormente. Foram utilizadas 25 amostras cedidas pela Vale, analisadas Augusto, Karen Soares; Paciornik, Sidnei. Microtomografia Computadorizada de Raios X Aplicada à Caracterização de Porosidade em Pelotas de Minério de Ferro. Rio de Janeiro, 2016. 156p. Tese de Doutorado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro. primeiramente por MicroCT e posteriormente por PIM ou MO. Para tentativas de otimização, foram testados alguns parâmetros de análise em MicroCT, tais como o uso de lentes, diferentes configurações geométricas dos dispositivos que compõem o equipamento e número de projeções, que afetam diretamente a resolução e o tempo de análise. Comparou-se os resultados obtidos em MicroCT com os obtidos por PIM e MO, em amostras equivalentes, observando-se valores menores de porosidade para a técnica de MicroCT, devido à pior resolução do sistema. Porém, a metodologia apresentada foi capaz de quantificar a porosidade aberta e fechada separadamente, descrever a distribuição espacial, além de medir tamanho e forma, dos poros. / [en] Iron ore pellets are one of the major iron-bearing raw materials, along with lump ore and sinter, for the steelmaking processes. Pellets are produced from ultrafine fractions of iron ores, which were previously considered as tailings of mineral beneficiation. The porosity generated during the pelletizing process is an important characteristic of the material because it allows internal gas flow, increasing its reducibility and consequently the process efficiency. On the other hand, the porosity affects the physical strength of the pellets, which must withstand all loads during handling operations, transportation and metallurgical processes. Thus, the amount, size, shape and spatial distribution of pores are important features for the pellet quality control. Traditionally, most analytical techniques used to characterize the porosity of pellets are mercury intrusion porosimetry (MIP) and optical microscopy (OM). Nevertheless, MIP allows evaluating only pores connected to the surface, in addition mercury is volatile and toxic, offering risks to the environment and human health. OM, in turn, is limited to two-dimensional space and can reveal unrepresentative information. Both techniques are destructive and consequently prevent further analysis of the same sample. The present work proposes the development of a methodology for the tridimensional characterization of the porosity in iron ore pellets through X-ray microtomography (MicroCT) and image analysis in order to separately determine the different types of pores (open and closed). 25 samples provided by the Vale mining company were first analyzed by MicroCT and then by MIP or OM. For optimization purposes, some operating parameters of MicroCT were tested, such as the use of lenses, different geometric configurations, and the number of projections, which directly affect the obtained image resolution and the analysis time. Comparing the results obtained in MicroCT with the results obtained by MIP and OM in equivalent samples, smaller porosity measurements were observed for MicroCT, due to the poorer resolution of the system. However, this methodology has been able to separately quantify the open and closed porosity, to describe the spatial distribution of pores, and to measure their size and shape.
2

[en] OPTIMIZATION OF THE THREE-DIMENSIONAL CHARACTERIZATION OF IRON ORE PELLETS / [pt] OTIMIZAÇÃO DA CARACTERIZAÇÃO TRIDIMENSIONAL DE PELOTAS DE MINÉRIO DE FERRO

CAMILA GOMES PECANHA DE SOUZA 03 January 2019 (has links)
[pt] A porosidade e o arranjo espacial dos poros são essenciais para a transferência de calor e para o processo de redução das pelotas de minério de ferro em fornos siderúrgicos. Portanto, a caracterização microestrutural das pelotas torna-se importante para o controle de qualidade do produto final, o aço, auxiliando no entendimento de seu comportamento nos altos-fornos. Atualmente, as técnicas mais utilizadas para a caracterização são a microscopia ótica, que oferece resultados somente bidimensionais e com isso não representa exatamente a realidade; e a Porosimetria por intrusão de mercúrio, na qual utiliza-se mercúrio, que é altamente nocivo à saúde humana, e avalia apenas poros conectados com a superfície. Além disso, são técnicas consideradas destrutivas, ou seja, não é possível fazer outras análises porque há a perda do material. Este trabalho propõe otimizar uma metodologia de caracterização tridimensional de porosidade em pelotas a partir da técnica de Microtomografia Computadorizada de Raios X (microCT) – que é uma técnica não destrutiva e fornece informações tridimensionais, porém apresenta limitações relacionadas ao tempo de análise e resolução – e análise e processamento das imagens geradas. Foi possível caracterizar em 3D a porosidade de amostras cedidas pela empresa Vale, a partir da distribuição espacial e obtenção do volume dos poros, além da discriminação de poros abertos e fechados por uma nova metodologia desenvolvida. Assim, a metodologia de aquisição foi otimizada, alcançando-se uma redução de tempo para todas as análises - foram necessárias 3 horas para a análise de uma pelota inteira. Confirmou-se que a resolução de fato causa grande impacto na caracterização de porosidade em pelotas de minério de ferro, evidenciado na grande diferença entre os percentuais de porosidades medidos nas diferentes resoluções alcançadas: 14,83 por cento para 7,6 micrometros, 23,69 por cento para 4 micrometros e 26,75 por cento para 2 micrometros. / [en] Porosity and pore space arrangement are essential for heat transfer and the reduction process of iron ore pellets in steelworks. Therefore, the pellet microstructural characterization becomes important for the quality control of the final product, steel, helping in the understanding of its behavior in the blast furnaces. Currently, the most used techniques for characterization are optical microscopy, which offers only two-dimensional results and thus does not represent exactly the reality; and mercury intrusion porosimetry that evaluates only pores connected to the surface, and uses mercury, which is highly harmful to human health. Moreover, they are techniques considered destructive as it is not possible to do other analyzes in the same samples, since they are destroyed. This work proposes to optimize a methodology of three-dimensional characterization of porosity in pellets using the technique of x-ray microtomography (microCT). This is a non - destructive technique that provides 3D information, but presents limitations related to the time of analysis and resolution. It was possible to characterize in 3D pellet samples provided by the Vale company, obtaining the porosity and the pore volume distribution. Open and closed porosity was also measured by a new developed methodology. Thus, the acquisition methodology was optimized, reaching a reduction of time for all the analyzes - it took 3 hours for the analysis of an entire ball. It was confirmed that the resolution had a great impact on the porosity characterization of iron ore pellets, evidenced by the great difference between the porosities measured at the different resolutions reached: 14.83 percent for 7.6 micrometers, 23.69 percent for 4 micrometers and 26.75 percent for 2 micrometers.
3

[en] CHARACTERIZATION OF IRON ORE PELLETS BY MULTIMODAL MICROSCOPY AND IMAGE ANALYSIS / [pt] CARACTERIZAÇÃO DE PELOTAS DE MINÉRIO DE FERRO POR MICROSCOPIA MULTIMODAL E ANÁLISE DE IMAGENS

REYNEL MARTÍNEZ CASTELLANOS 16 August 2016 (has links)
[pt] Pelotas de minério de ferro são formadas a partir da aglomeração de finos de minério e constituem o principal insumo para o processo de redução na indústria siderúrgica. As frações de fases sólidas e de poros afetam propriedades tais como resistência à compressão, permeabilidade a gases durante o processo de redução, e redutibilidade. No presente trabalho desenvolveu-se um método automático para a identificação e a quantificação automáticas das fases sólidas e poros presentes em pelotas de minério de ferro, mediante a correlação de imagens obtidas por duas técnicas diferentes – microscopia ótica (MO) e eletrônica de varredura (MEV). Imagens em mosaico cobrindo completamente uma seção transversal equatorial da pelota foram capturadas em MO e MEV. Utilizando técnicas de processamento de imagens, as fases e os poros foram identificados e quantificados em cada tipo de imagem. No entanto, cada técnica apresenta limitações na discriminação de certas fases, impedindo uma quantificação completa. Por outro lado, a combinação de imagens dos dois tipos permite discriminar todas as fases. Para isso as imagens de MO e MEV foram automaticamente registradas utilizando pontos de referência homólogos obtidos pela técnica SIFT – Scale Invariant Feature Transform. Após o registro, fases e poros foram individualmente identificadas e quantificadas, levando a resultados muito mais precisos do que os obtidos separadamente. Comparou-se também o resultado de porosidade com o obtido por microtomografia de raios-x (MicroCT). Para isso, um procedimento de correlação identificou a camada de uma tomografia 3D mais similar às imagens de MO ou MEV, foi realizado o registro e mediu-se a fração de área de poros. O valor encontrado foi muito menor na imagem de MicroCT, fato atribuído à pior resolução espacial desta técnica. / [en] Iron ore pellets are formed by an agglomeration process and currently constitute the main source for the reduction process in steel making. The fractions of solid phases and pores directly affect pellets´ properties such as compression resistance, gas permeability during the reduction process, and reducibility. In this work a method for the automatic identification and quantification of phases and pores in iron ore pellets was developed, based on the correlation between images obtained with two different techniques – optical microscopy (OM) and scanning electron microscopy (SEM). Mosaic images covering the full equatorial cross section of a pellet were acquired with OM and SEM. Employing digital image processing techniques the phases and pores were identified and quantified in each type of image. However, each imaging technique has limitations in the discrimination of certain phases, preventing a full quantification. On the other hand, the combination of the two types of images allows discriminating all phases. For that, OM and SEM images were automatically registered using homologous reference points obtained with the SIFT – Scale Invariant Feature Transform technique. After registration, phases and pores were individually identified and quantified, leading to much more accurate results than those provided separately by OM or SEM. The porosity was also compared with that provided by x-ray MicroCT. For that, a correlation procedure identified the closest matching MicroCT layer to the OM or SEM images, the image was registered and the pore fraction was measured. The obtained value is much lower for the MicroCT image, what was attributed to the worse spatial resolution of the technique.

Page generated in 0.0488 seconds