1 |
[en] GOSSET POLYTOPES AND THE COXETER GROUPS E(N) / [pt] POLITOPOS DE GOSSET E OS GRUPOS DE COXETER E(N)CAMILLA NERES PEIXOTO 06 October 2010 (has links)
[pt] Um politopo convexo é semiregular se todas as suas faces forem
regulares e o grupo de isometrias agir transitivamente sobre os vértices.
A classificação dos politopos semiregulares inclui algumas famílias infinitas,
algumas exceções em dimensão baixa e uma família, os politopos de Gosset,
que está definida para dimensão entre 3 e 8. Certos grupos de isometrias de
R(n) gerados por reflexões são chamados grupos de Coxeter. A classificação
dos grupos de Coxeter inclui três famílias infinitas, algumas exceções em
dimensão menor ou igual a 4 e os grupos excepcionais E(6), E(7) e E(8). O grupo
E(n) é o grupo das isometrias do politopo de Gosset em dimensao n. Nesta
dissertação construiremos os grupos de Coxeter En, os politopos de Gosset
e indicaremos a relação destes objetos com os reticulados e as álgebras de
Lie também conhecidos como E(n). / [en] A convex polytope is semiregular if all its faces are regular and the
group of isometries acts transitively over vertices. The classification of
semiregular polytopes includes a few infinite families, some low dimensional
exceptions and a family, the Gosset polytopes, which is defined for dimension
3 to 8. Certain groups of isometries of R(n) generated by reflections are
called Coxeter groups. The classification of finite Coxeter groups includes
three infinite families, some exceptions in dimension 4 or lower and the
exceptional groups E(6), E(7) and E(8). The group En is the group of isometries
of the Gosset polytope in dimension n. In this dissertation we construct the
Coxeter groups En, the Gosset polytopes and indicate the relationship of
these objects with the lattices and Lie algebras which are also known as E(n).
|
2 |
[en] AUTOMATED SYNTHESIS OF OPTIMAL DECISION TREES FOR SMALL COMBINATORIAL OPTIMIZATION PROBLEMS / [pt] SÍNTESE AUTOMATIZADA DE ÁRVORES DE DECISÃO ÓTIMAS PARA PEQUENOS PROBLEMAS DE OTIMIZAÇÃO COMBINATÓRIACLEBER OLIVEIRA DAMASCENO 24 August 2021 (has links)
[pt] A análise de complexidade clássica para problemas NP-difíceis é geralmente
orientada para cenários de pior caso, considerando apenas o comportamento
assintótico. No entanto, existem algoritmos práticos com execução em um tempo razoável para muitos problemas clássicos. Além disso, há evidências que apontam para algoritmos polinomiais no modelo de árvore de decisão linear para resolver esses problemas, embora não muito explorados. Neste trabalho, exploramos esses resultados teóricos anteriores. Mostramos que a solução ótima para problemas combinatórios 0-1 pode ser encontrada reduzindo esses problemas para uma Busca por Vizinho Mais Próximo sobre o conjunto de vértices de Voronoi correspondentes. Utilizamos os hiperplanos que delimitam essas regiões para gerar sistematicamente uma árvore de decisão que repetidamente divide o espaço até que possa separar todas as soluções, garantindo uma resposta ótima. Fazemos experimentos para testar os limites de tamanho para os quais podemos construir essas árvores para os casos do 0-1 knapsack, weighted minimum cut e symmetric traveling salesman. Conseguimos encontrar as árvores desses problemas com tamanhos até 10, 5 e 6, respectivamente. Obtemos também as relações de adjacência completas para os esqueletos dos politopos do knapsack
e do traveling salesman até os tamanhos 10 e 7. Nossa abordagem supera
consistentemente o método de enumeração e os métodos baseline para o weighted
minimum cut e symmetric traveling salesman, fornecendo soluções ótimas em
microssegundos. / [en] Classical complexity analysis for NP-hard problems is usually oriented to
worst-case scenarios, considering only the asymptotic behavior. However, there
are practical algorithms running in a reasonable time for many classic problems. Furthermore, there is evidence pointing towards polynomial algorithms in
the linear decision tree model to solve these problems, although not explored
much. In this work, we explore previous theoretical results. We show that the
optimal solution for 0-1 combinatorial problems can be found by reducing these
problems into a Nearest Neighbor Search over the set of corresponding Voronoi
vertices. We use the hyperplanes delimiting these regions to systematically generate a decision tree that repeatedly splits the space until it can separate all solutions, guaranteeing an optimal answer. We run experiments to test the size limits for which we can build these trees for the cases of the 0-1 knapsack, weighted minimum cut, and symmetric traveling salesman. We manage to find the trees of these problems with sizes up to 10, 5, and 6, respectively. We also obtain the complete adjacency relations for the skeletons of the knapsack and traveling salesman polytopes up to size 10 and 7. Our approach consistently outperforms the enumeration method and the baseline methods for the weighted minimum cut and symmetric traveling salesman, providing optimal solutions within microseconds.
|
Page generated in 0.0238 seconds