• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] SEMANTIC ROLE-LABELING FOR PORTUGUESE / [pt] ANOTADOR DE PAPEIS SEMÂNTICOS PARA PORTUGUÊS

ARTHUR BELTRAO CASTILHO NETO 23 June 2017 (has links)
[pt] A anotação de papeis semânticos (APS) é uma importante tarefa do processamento de linguagem natural (PLN), que possibilita estabelecer uma relação de significado entre os eventos descritos em uma sentença e seus participantes. Dessa forma, tem o potencial de melhorar o desempenho de inúmeros outros sistemas, tais como: tradução automática, correção ortográfica, extração e recuperação de informações e sistemas de perguntas e respostas, uma vez que reduz as ambiguidades existentes no texto de entrada. A grande maioria dos sistemas de APS publicados no mundo realiza a tarefa empregando técnicas de aprendizado supervisionado e, para obter melhores resultados, usam corpora manualmente revisados de tamanho considerável. No caso do Brasil, o recurso lexical que possui anotações semânticas (Propbank.br) é muito menor. Por isso, nos últimos anos, foram feitas tentativas de melhorar esse resultado utilizando técnicas de aprendizado semisupervisionado ou não-supervisionado. Embora esses trabalhos tenham contribuido direta e indiretamente para a área de PLN, não foram capazes de superar o desempenho dos sistemas puramente supervisionados. Este trabalho apresenta uma abordagem ao problema de anotação de papéis semânticos no idioma português. Utilizamos aprendizado supervisionado sobre um conjunto de 114 atributos categóricos e empregando duas técnicas de regularização de domínio, combinadas para reduzir o número de atributos binários em 96 por cento. O modelo gerado usa uma support vector machine com solver L2-loss dual support vector classification e é testado na base PropBank.br, apresentando desempenho ligeiramente superior ao estado-da-arte. O sistema é avaliado empiricamente pelo script oficial da CoNLL 2005 Shared Task, obtendo 82,17 por cento de precisão, 82,88 por cento de cobertura e 82,52 por cento de F1 ao passo que o estado-da-arte anterior atinge 83,0 por cento de precisão, 81,7 por cento de cobertura e 82,3 por cento de F1. / [en] Semantic role-labeling (SRL) is an important task of natural language processing (NLP) which allows establishing meaningful relationships between events described in a given sentence and its participants. Therefore, it can potentially improve performance on a large number of NLP systems such as automatic translation, spell correction, information extraction and retrieval and question answering, as it decreases ambiguity in the input text. The vast majority of SRL systems reported so far employed supervised learning techniques to perform the task. For better results, large sized manually reviewed corpora are used. The Brazilian semantic role labeled lexical resource (Propbank.br) is much smaller. Hence, in recent years, attempts have been made to improve performance using semi supervised and unsupervised learning. Even making several direct and indirect contributions to NLP, those studies were not able to outperform exclusively supervised systems. This paper presents an approach to the SRL task in Portuguese language using supervised learning over a set of 114 categorical features. Over those, we apply a combination of two domain regularization methods to cut binary features down to 96 percent. We test a SVM model (L2-loss dual support vector classification) on PropBank.Br dataset achieving results slightly better than state-of-the-art. We empirically evaluate the system using official CoNLL 2005 Shared Task script pulling 82.17 percent precision, 82.88 percent coverage and 82.52 percent F1. The previous state-of-the-art Portuguese SRL system scores 83.0 percent precision, 81.7 percent coverage and 82.3 percent F1.

Page generated in 0.0448 seconds