1 |
[en] QEEF-G: ADAPTIVE PARALLEL EXECUTION OF ITERATIVE QUERIES / [pt] QEEF-G: EXECUÇÃO PARALELA ADAPTATIVA DE CONSULTAS ITERATIVASVINICIUS FONTES VIEIRA DA SILVA 25 April 2007 (has links)
[pt] O processamento de consulta paralelo tradicional utilize-
se de nós
computacionais para reduzir o tempo de processamento de
consultas. Com o
surgimento das grades computacionais, milhares de nós
podem ser utilizados,
desafiando as atuais técnicas de processamento de consulta
a oferecerem um
suporte massivo ao paralelismo em um ambiente onde as
condições variam todo a
instante. Em adição, as aplicações científicas executadas
neste ambiente oferecem
novas características de processamento de dados que devem
ser integradas em um
sistema desenvolvido para este ambiente. Neste trabalho
apresentamos o sistema
de processamento de consulta paralelo do CoDIMS-G, e seu
novo operador Orbit
que foi desenvolvido para suportar a avaliação de
consultas iterativas. Neste
modelo de execução as tuplas são constantemente avaliadas
por um fragmento
paralelo do plano de execução. O trabalho inclui o
desenvolvimento do sistema de
processamento de consulta e um novo algoritmo de
escalonamento que, considera
as variações de rede e o throughput de cada nó, permitindo
ao sistema se adaptar
constantemente as variações no ambiente. / [en] Traditional parallel query processing uses multiple
computing nodes to
reduce query response time. Within a Grid computing
context, the availability of
thousands of nodes challenge current parallel query
processing techniques to
support massive parallelism in a constantly varying
environment conditions. In
addition, scientific applications running on Grids offer
new data processing
characteristics that shall be integrated in such a
framework. In this work we
present the CoDIMS-G parallel query processing system with
a full-fledged new
query execution operator named Orbit. Orbit is designed
for evaluating massive
iterative based data processing. Tuples in Orbit iterate
over a parallelized
fragment of the query execution plan. This work includes
the development of the
query processing system and a new scheduling algorithm
that considers variation
on network and the throughput of each node. Such algorithm
permits the system
to adapt constantly to the changes in the environment.
|
2 |
[pt] ALGORITMOS ADAPTATIVOS COM EXPLORAÇÃO DE ESPARSIDADE EM REDES DE SENSORES DISTRIBUÍDAS / [en] DISTRIBUTED SPARSITY-AWARE SIGNAL PROCESSING ALGORITHMS FOR SENSOR NETWORKSTAMARA GUERRA MILLER 17 August 2016 (has links)
[pt] Neste trabalho de dissertação são propostos algoritmos adaptativos que
exploram a esparsidade em redes distribuídas de sensores para estimação de
parâmetros e estimação espectral. São desenvolvidos algoritmos gradiente conjugado
(CG) distribuído para os protocolos consenso e difusão em versão
convencional e modificada (MCG). Esses algoritmos são desenvolvidos com
exploração de esparsidade usando as funções penalidades l1 e log-sum. Os
métodos propostos apresentam um melhor desempenho en termos de velocidade
de convergência e desvio médio quadratico (MSD) que as já conhecidas
variantes distribuídas do algoritmo least mean square (LMS) e muito próximo
ao desempenho do algoritmo recursive least square (RLS). Além disso, propõe-se
um algoritmo distribuído de optimização alternada de variáveis discretas e
contínuas (DAMDC) baseado no LMS. O algoritmo DAMDC-LMS apresenta
um desempenho muito próximo ao algoritmo oráculo e tem maior velocidade
de convergência que os algoritmos estudados com exploração de esparsidade.
Os resultados numéricos mostram que o algoritmo DAMDC-LMS pode ser
aplicado em vários cenários. / [en] This dissertation proposes distributed adaptive algorithms exploiting
sparsity for parameter and spectrum estimation over sensor networks. Conventional
and modified conjugate gradient (CG and MCG) algorithms using
consensus and diffusion strategies are presented. Sparsity-aware versions of CG
an MCG algorithms using l1 and log-sum penalty functions are developed. The
proposed sparsity-aware and non-sparse CG and MCG methods outperform
the equivalent variants of the least-mean square (LMS) algorithms in terms of
convergence rate and mean square deviation (MSD) at steady state, and have a
close performance to the recursive least square (RLS) algorithm. The diffusion
CG strategies have shown the best performance, specifically the adapt then
combine (ATC) version. Furthermore a distributed alternating mixed discretecontinuous
(DAMDC) algorithm to approach the oracle algorithm based on the
diffusion strategy for parameter and spectrum estimation over sensor networks
is proposed. An LMS type algorithm with the DAMDC proposed technique obtains
the oracle matrix in an adaptive way and compare it with the existing
sparsity-aware as well as the classical algorithms. The proposed algorithm has
an improved performance in terms of MSD. Numerical results show that the
DAMDC-LMS algorithm is reliable and can be applied in several scenarios.
|
3 |
[en] DIVISIBLE JOB SCHEDULING IN STAR NETWORKS / [pt] ESCALONAMENTO DE TAREFAS DIVISÍVEIS EM REDES ESTRELAELBIO RENATO TORRES ABIB 03 August 2004 (has links)
[pt] O problema de escalonamento de tarefas divisíveis consiste
em determinar
como uma carga a ser processada deve ser dividida entre
processadores
e em que ordem cada fração de carga será enviada a cada
processador.
Considera-se o escalonamento em redes estrela com
computadores e enlaces
heterogêneos. Nesta dissertação são propostas formulações
originais deste
problema como modelos de programação linear inteira mista,
assim como
um novo algoritmo de complexidade O(n) para a solução ótima
de um
caso especial. Além disso, também são propostas duas novas
heurísticas
para o problema, que permitem a elaboração de bons
escalonamentos para
instâncias de grande porte em um reduzido tempo de
processamento. / [en] The problem of divisible job scheduling consists of
determining how to
divide the data to be processed among processors and in
which order each
fraction should be sent to them. In this dissertation, we
consider the divisible
load scheduling problem in star networks with heterogeneous
computers
and links. Original mixed integer linear programming
formulations of this
problem are proposed, as well as a new algorithm with
complexity O(n)
to find the optimal solution for a special case. We also
propose two fast
heuristics that achieve good results for instances
representing large scale
computing systems.
|
4 |
[en] INTERIMAGE CLOUD PLATFORM: THE ARCHITECTURE OF A DISTRIBUTED PLATFORM FOR AUTOMATIC, OBJECT-BASED IMAGE INTERPRETATION / [pt] PLATAFORMA EM NUVEM INTERIMAGE: A ARQUITETURA DE UMA PLATAFORMA DISTRIBUÍDA PARA A INTERPRETAÇÃO AUTOMÁTICA DE IMAGENS BASEADA EM OBJETOSRODRIGO DA SILVA FERREIRA 27 April 2016 (has links)
[pt] O objetivo genérico desta tese foi o desenvolvimento de uma arquitetura computacional distribuída para a interpretação automática, baseada em objetos, de grandes volumes de dados de imagem de sensoriamento remoto, com foco na distribuição de dados e processamento em um ambiente de computação em nuvem. Dois objetivos específicos foram perseguidos: (i) o desenvolvimento de uma nova arquitetura distribuída para análise de imagens que é capaz de lidar com vetores e imagens ao mesmo tempo; e (ii) a modelagem e implementação de uma plataforma distribuída para a interpretação de grandes volumes de dados de sensoriamento remoto. Para validar a nova arquitetura, foram realizados experimentos com dois modelos de classificação – um de cobertura da terra e outro de uso do solo – sobre uma imagem QuickBird de uma área do município de São Paulo. Os modelos de classificação, propostos por Novack (Novack09), foram recriados usando as estruturas de representação do conhecimento da nova plataforma. Nos experimentos executados, a plataforma foi capaz de processar todo o modelo de classificação de cobertura da terra para uma imagem de 32.000x32.000 pixels (aproximadamente 3,81 GB), com aproximadamente 8 milhões de objetos de imagem (aproximadamente 23,2 GB), em apenas 1 hora, utilizando 32 máquinas em um serviço de nuvem comercial. Resultados igualmente interessantes foram obtidos para o modelo de classificação de uso do solo. Outra possibilidade de paralelismo oferecida pelas estruturas de representação de conhecimento da plataforma também foi avaliada. / [en] The general objective of this thesis was the development of a distributed computational architecture for the automatic, object-based interpretation of large volumes of remote sensing image data, focusing on data and processing distribution in a cloud computing environment. Two specific objectives were pursued: (i) the development of a novel distributed architecture for image analysis that is able to deal with vectors and rasters at the same time; and (ii) the design and implementation of an open-source, distributed platform for the interpretation of very large volumes of remote sensing data. In order to validate the new architecture, experiments were carried out using two classification models – land cover and land use – on a QuickBird image of an area of the São Paulo municipality. The classification models, proposed by Novack (Novack09), were recreated using the knowledge representation structures available in the new platform. In the executed experiments, the platform was able to process the whole land cover classification model on a 32,000x32,000-pixel image (approximately 3.81 GB), with approximately 8 million image objects (approximately 23.2 GB), in just one hour, using 32 machines in a commercial cloud computing service. Equally interesting results were obtained for the land use classification model. Another possibility of parallelism provided by the platform s knowledge representation structures was also evaluated.
|
5 |
[en] A DISTRIBUTED REGION GROWING IMAGE SEGMENTATION BASED ON MAPREDUCE / [pt] SEGMENTAÇÃO DE IMAGENS DISTRIBUÍDA BASEADA EM MAPREDUCEPATRICK NIGRI HAPP 29 August 2018 (has links)
[pt] A Segmentação de imagens representa uma etapa fundamental na análise de imagens e geralmente envolve um alto custo computacional, especialmente ao lidar com grandes volumes de dados. Devido ao significativo aumento nas resoluções espaciais, espectrais e temporais das imagens de sensoriamento remoto nos últimos anos, as soluções sequenciais e paralelas atualmente empregadas não conseguem alcançar os níveis de desempenho e escalabilidade esperados. Este trabalho propõe um método de segmentação de imagens distribuída capaz de lidar, de forma escalável e eficiente, com imagens grandes de altíssima resolução. A solução proposta é baseada no modelo MapReduce, que oferece uma estrutura
altamente escalável e confiável para armazenar e processar dados muito grandes em ambientes de computação em clusters e, em particular, também para nuvens privadas e comerciais. O método proposto é extensível a qualquer algoritmo de crescimento de regiões podendo também ser adaptado para outros modelos. A solução foi implementada e validada usando a plataforma Hadoop. Os resultados experimentais comprovam a viabilidade de realizar a segmentação distribuída sobre o modelo MapReduce por intermédio da computação na nuvem. / [en] Image segmentation is a critical step in image analysis, and generally involves a high computational cost, especially when dealing with large volumes of data. Given the significant increase in the spatial, spectral and temporal resolutions of remote sensing imagery in the last years, current sequential and parallel solutions fail to deliver the expected performance and scalability. This work proposes a distributed image segmentation method, capable of handling very large high-resolution images in an efficient and scalable way. The proposed solution is based on the MapReduce model, which offers a highly scalable and reliable framework for storing and processing massive data in cluster environments and in private and public computing clouds. The proposed method is extendable to any region-growing algorithm and can be adapted to other models. The solution was implemented and validated using the Hadoop platform. Experimental results attest the viability of performing distributed segmentation over the MapReduce model through cloud computing.
|
6 |
[en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT / [pt] SISTEMA INTELIGENTE DE OTIMIZAÇÃO DE ALTERNATIVAS DE DESENVOLVIMENTO DE CAMPOS PETROLÍFEROSYVAN JESUS TUPAC VALDIVIA 15 June 2005 (has links)
[pt] Este trabalho investiga o problema de otimização de
alternativas para o
desenvolvimento de campos petrolíferos. Uma alternativa de
desenvolvimento
refere-se à forma como um campo petrolífero, conhecido e
delimitado, é colocado
em produção, isto é, diz respeito à determinação do número,
localização e
agendamento dos poços de produção e injeção. Otimização de
alternativas
consiste em encontrar as configurações de produção que, a
longo prazo, forneçam
o maior valor presente líquido (VPL), obtido a partir do
custo de investimento
inicial, do preço do petróleo, da produção de óleo e gás,
dos custos de operação,
das alíquotas de impostos e dos royalties pagos durante o
tempo de produção. A
produção de óleo é obtida usando-se um simulador de
reservatório. O simulador
recebe a informação da alternativa a ser simulada e retorna
a curva de produção de
óleo e gás no tempo de produção especificado. Cada execução
do simulador pode
demorar desde alguns segundos até várias horas, dependendo
da complexidade do
reservatório modelado. Este trabalho propõe, implementa e
avalia um sistema
inteligente de otimização que emprega: algoritmos genéticos
(AGs) para a busca
de uma alternativa de desenvolvimento ótima; uso de
ambiente de computação
paralela para a simulação de reservatório e cálculo do VPL
das alternativas; um
módulo de inferência baseado em modelos inteligentes para
aproximar a função
de produção de óleo; e um módulo de caracterização baseado
em mapas de
qualidade para obter informações do campo petrolífero a
serem aproveitadas
durante a otimização. Este trabalho consistiu de 4 etapas:
uma revisão da
literatura sobre desenvolvimento de campos petrolíferos,
simulação de
reservatórios e caracterização de campos petrolíferos; um
estudo das técnicas de
inteligência computacional para otimização e aproximação de
funções;
desenvolvimento do modelo proposto de otimização de
alternativas; e o estudo de
casos. O modelo proposto foi avaliado com configurações de
reservatório
homogêneo e heterogêneo obtendo resultados da otimização,
do uso da
caracterização, da aproximação pelo módulo de inferência e
do uso do ambiente paralelo. Os resultados obtidos mostram
que, o modelo proposto, permite
alcançar respostas com altos VPL sem utilizar conhecimento
prévio, e também a
partir de informações extraídas da caracterização ou
fornecidas pelo próprio
especialista como sementes iniciais na otimização. A
principal contribuição deste
trabalho é a concepção e implementação de um sistema
baseado em técnicas
inteligentes para otimizar alternativas de desenvolvimento
com uma redução do
tempo computacional para um processo iterativo, obtida
tanto pelo
aproveitamento do poder computacional de um ambiente de
computação paralela,
como pelo uso de aproximações das curvas de produção. Este
sistema inteligente
oferece uma ferramenta de suporte à decisão que automatiza
a busca de
alternativas de desenvolvimento e aproveita informações
vindas do conhecimento
do engenheiro de reservatório. / [en] This work investigates the problem of optimization of
alternatives for
petroleum fields` development. A development alternative
refers to the way a
well-known and delimited petroleum field is placed in
production. This process
involves the determination of the number, localization and
scheduling of producer
and injector wells. Thus, the optimization of alternatives
consists of finding the
production configurations that, in the long term, provide
the maximum net present
value (NPV); this is obtained from the investment cost, oil
price, oil & gas
production, operation costs and taxes and royalties paid
during the production
time. The oil and gas production is obtained from a
reservoir simulator. The
simulator receives information from the alternative to be
simulated, and returns an
oil & gas production to specified production time. Each
simulation can take from
a few seconds to several hours, depending on complexity of
the reservoir being
modeled. This work proposes, implements and evaluates an
intelligent
optimization system that comprises: genetic algorithms
(GAs) to search an
optimal development alternative; using of parallel
computing environment to
reservoir simulation and NPV computing; an inference
module, basis in intelligent
models, to approximate the oil production function; and a
oilfield characterization
module, basis in quality maps, to obtain information about
the oilfield to use
during optimization process. This work consisted of four
stages: a literature
review about petroleum field development and reservoir
simulation; a study about
computational intelligence techniques applied in
optimization and functions
approximation; the development of alternatives optimization
proposal model; and
the case studies. The proposal model was evaluated using
homogeneous and
heterogeneous reservoir configurations, obtaining results
of optimization, by using
characterization, the inference module and the parallel
environment. The obtained
results indicate that the proposed model provides
alternatives with high NPV
without previous knowledge and also from information
provided by
characterization or information inserted by the expert as
initial seeds into optimization. The main contribution of
this work is the conception and the
implementation of a system basis in intelligent techniques
to optimize
development alternatives offering a reduction time to an
iterative process,
obtained from exploit of computational effort of a parallel
computing environment
or by using of production curves approximations. This
intelligent system offers a
decision-support tool that allows automating the search
process of development
alternatives and exploiting information from knowledge of
reservoir engineers.
|
Page generated in 0.0464 seconds