1 |
[en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT / [pt] SISTEMA INTELIGENTE DE OTIMIZAÇÃO DE ALTERNATIVAS DE DESENVOLVIMENTO DE CAMPOS PETROLÍFEROSYVAN JESUS TUPAC VALDIVIA 15 June 2005 (has links)
[pt] Este trabalho investiga o problema de otimização de
alternativas para o
desenvolvimento de campos petrolíferos. Uma alternativa de
desenvolvimento
refere-se à forma como um campo petrolífero, conhecido e
delimitado, é colocado
em produção, isto é, diz respeito à determinação do número,
localização e
agendamento dos poços de produção e injeção. Otimização de
alternativas
consiste em encontrar as configurações de produção que, a
longo prazo, forneçam
o maior valor presente líquido (VPL), obtido a partir do
custo de investimento
inicial, do preço do petróleo, da produção de óleo e gás,
dos custos de operação,
das alíquotas de impostos e dos royalties pagos durante o
tempo de produção. A
produção de óleo é obtida usando-se um simulador de
reservatório. O simulador
recebe a informação da alternativa a ser simulada e retorna
a curva de produção de
óleo e gás no tempo de produção especificado. Cada execução
do simulador pode
demorar desde alguns segundos até várias horas, dependendo
da complexidade do
reservatório modelado. Este trabalho propõe, implementa e
avalia um sistema
inteligente de otimização que emprega: algoritmos genéticos
(AGs) para a busca
de uma alternativa de desenvolvimento ótima; uso de
ambiente de computação
paralela para a simulação de reservatório e cálculo do VPL
das alternativas; um
módulo de inferência baseado em modelos inteligentes para
aproximar a função
de produção de óleo; e um módulo de caracterização baseado
em mapas de
qualidade para obter informações do campo petrolífero a
serem aproveitadas
durante a otimização. Este trabalho consistiu de 4 etapas:
uma revisão da
literatura sobre desenvolvimento de campos petrolíferos,
simulação de
reservatórios e caracterização de campos petrolíferos; um
estudo das técnicas de
inteligência computacional para otimização e aproximação de
funções;
desenvolvimento do modelo proposto de otimização de
alternativas; e o estudo de
casos. O modelo proposto foi avaliado com configurações de
reservatório
homogêneo e heterogêneo obtendo resultados da otimização,
do uso da
caracterização, da aproximação pelo módulo de inferência e
do uso do ambiente paralelo. Os resultados obtidos mostram
que, o modelo proposto, permite
alcançar respostas com altos VPL sem utilizar conhecimento
prévio, e também a
partir de informações extraídas da caracterização ou
fornecidas pelo próprio
especialista como sementes iniciais na otimização. A
principal contribuição deste
trabalho é a concepção e implementação de um sistema
baseado em técnicas
inteligentes para otimizar alternativas de desenvolvimento
com uma redução do
tempo computacional para um processo iterativo, obtida
tanto pelo
aproveitamento do poder computacional de um ambiente de
computação paralela,
como pelo uso de aproximações das curvas de produção. Este
sistema inteligente
oferece uma ferramenta de suporte à decisão que automatiza
a busca de
alternativas de desenvolvimento e aproveita informações
vindas do conhecimento
do engenheiro de reservatório. / [en] This work investigates the problem of optimization of
alternatives for
petroleum fields` development. A development alternative
refers to the way a
well-known and delimited petroleum field is placed in
production. This process
involves the determination of the number, localization and
scheduling of producer
and injector wells. Thus, the optimization of alternatives
consists of finding the
production configurations that, in the long term, provide
the maximum net present
value (NPV); this is obtained from the investment cost, oil
price, oil & gas
production, operation costs and taxes and royalties paid
during the production
time. The oil and gas production is obtained from a
reservoir simulator. The
simulator receives information from the alternative to be
simulated, and returns an
oil & gas production to specified production time. Each
simulation can take from
a few seconds to several hours, depending on complexity of
the reservoir being
modeled. This work proposes, implements and evaluates an
intelligent
optimization system that comprises: genetic algorithms
(GAs) to search an
optimal development alternative; using of parallel
computing environment to
reservoir simulation and NPV computing; an inference
module, basis in intelligent
models, to approximate the oil production function; and a
oilfield characterization
module, basis in quality maps, to obtain information about
the oilfield to use
during optimization process. This work consisted of four
stages: a literature
review about petroleum field development and reservoir
simulation; a study about
computational intelligence techniques applied in
optimization and functions
approximation; the development of alternatives optimization
proposal model; and
the case studies. The proposal model was evaluated using
homogeneous and
heterogeneous reservoir configurations, obtaining results
of optimization, by using
characterization, the inference module and the parallel
environment. The obtained
results indicate that the proposed model provides
alternatives with high NPV
without previous knowledge and also from information
provided by
characterization or information inserted by the expert as
initial seeds into optimization. The main contribution of
this work is the conception and the
implementation of a system basis in intelligent techniques
to optimize
development alternatives offering a reduction time to an
iterative process,
obtained from exploit of computational effort of a parallel
computing environment
or by using of production curves approximations. This
intelligent system offers a
decision-support tool that allows automating the search
process of development
alternatives and exploiting information from knowledge of
reservoir engineers.
|
2 |
[pt] MODELOS NEURO-FUZZY HIERÁRQUICO BSP PARA CLASSIFICAÇÃO DE PADRÕES E EXTRAÇÃO DE REGRAS FUZZY EM BANCO DE DADOS. / [es] MODELOS NEURO-FUZZY JERÁRQUICO BSP PARA CLASIFICACIÓN DE PADRONES Y EXTRACCIÓN DE REGLAS FUZZY EN BASES DE DATOS / [en] NEURAL-FUZZY HIERARCHICAL MODELS FOR PATTERN CLASSIFICATION AND FUZZY RULE EXTRACTION FROM DATABASESLAERCIO BRITO GONCALVES 08 March 2001 (has links)
[pt] Esta dissertação investiga a utilização de sistemas Neuro-
Fuzzy Hierárquicos BSP (Binary Space Partitioning) para
classificação de padrões e para extração de regras fuzzy em
bases de dados. O objetivo do trabalho foi criar modelos
específicos para classificação de registros a partir do
modelo Neuro-Fuzzy Hierárquico BSP que é capaz de gerar sua
própria estrutura automaticamente e extrair regras fuzzy,
lingüisticamente interpretáveis, que explicam a estrutura
dos dados. O princípio da tarefa de classificação de
padrões é descobrir relacionamentos entre os dados com a
intenção de prever a classe de um padrão desconhecido.
O trabalho consistiu fundamentalmente de quatro partes: um
estudo sobre os principais métodos de classificação de
padrões; análise do sistema Neuro-Fuzzy Hierárquico BSP
(NFHB) original na tarefa de classificação; definição e
implementação de dois sistemas NFHB específicos para
classificação de padrões; e o estudo de casos.
No estudo sobre os métodos de classificação foi feito um
levantamento bibliográfico da área, resultando em um
"survey" onde foram apresentadas as principais técnicas
utilizadas para esta tarefa. Entre as principais técnicas
destacaram-se: os métodos estatísticos, algoritmos
genéticos, árvores de decisão fuzzy, redes neurais, e os
sistemas neuro-fuzzy.
Na análise do sistema NFHB na classificação de dados levou-
se em consideração as peculiaridades do modelo, que possui:
aprendizado da estrutura, particionamento recursivo do
espaço de entrada, aceita maior número de entradas que os
outros sistemas neuro-fuzzy, além de regras fuzzy
recursivas. O sistema NFHB, entretanto, não é um modelo
exatamente desenvolvido para classificação de padrões. O
modelo NFHB original possui apenas uma saída e para utilizá-
lo como um classificador é necessário criar um critério de
faixa de valores (janelas) para representar as classes.
Assim sendo, decidiu-se criar novos modelos que suprissem
essa deficiência.
Foram definidos dois novos sistemas NFHB para classificação
de padrões: NFHB-Invertido e NFHB-Class. O primeiro utiliza
a arquitetura do modelo NFHB original no aprendizado e em
seguida a inversão da mesma para a validação dos
resultados. A inversão do sistema consistiu de um meio de
adaptar o novo sistema à tarefa específica de
classificação, pois passou-se a ter o número de saídas do
sistema igual ao número de classes ao invés do critério de
faixa de valores utilizado no modelo NFHB original. Já o
sistema NFHB-Class utilizou, tanto para a fase de
aprendizado, quanto para a fase de validação, o modelo NFHB
original invertido. Ambos os sistemas criados possuem o
número de saídas igual ao número de classes dos padrões, o
que representou um grande diferencial em relação ao modelo
NFHB original. Além do objetivo de classificação de
padrões, o sistema NFHB-Class foi capaz de
extrair conhecimento em forma de regras fuzzy
interpretáveis. Essas regras são expressas da seguinte
maneira: SE x é A e y é B então padrão pertence à classe Z.
Realizou-se um amplo estudo de casos, abrangendo diversas
bases de dados Benchmark para a tarefa de classificação,
tais como: Iris Dataset, Wine Data, Pima Indians Diabetes
Database, Bupa Liver Disorders e Heart Disease, e foram
feitas comparações com diversos modelos e algoritmos de
classificação de padrões.
Os resultados encontrados com os modelos NFHB-Invertido e
NFHB-Class mostraram-se, na maioria dos casos, superiores
ou iguais aos melhores resultados encontrados pelos outros
modelos e algoritmos aos quais foram comparados.O
desempenho dos modelos NFHB-Invertido e NFHB-Class em
relação ao tempo de processamento também se mostrou muito
bom. Para todas as bases de dados descritas no estudo de
casos (capítulo 8), os modelos convergiram para uma ótima
solução de classificação, além da extração das regras
fuzzy, em / [en] This dissertation investigates the use of Neuro-Fuzzy
Hierarchical BSP (Binary Space
Partitioning) systems for pattern classification and
extraction of fuzzy rules in databases. The
objective of this work was to create specific models for
the classification of registers based on
the Neuro-Fuzzy BSP model that is able to create its
structure automatically and to extract
linguistic rules that explain the data structure. The task
of pattern classification is to find
relationships between data with the intention of
forecasting the class of an unknown pattern.
The work consisted of four parts: study about the main
methods of the pattern
classification; evaluation of the original Neuro-Fuzzy
Hierarchical BSP system (NFHB) in
pattern classification; definition and implementation of
two NFHB systems dedicated to
pattern classification; and case studies.
The study about classification methods resulted in a survey
on the area, where the
main techniques used for pattern classification are
described. The main techniques are:
statistic methods, genetic algorithms, decision trees,
neural networks, and neuro-fuzzy
systems.
The evaluation of the NFHB system in pattern classification
took in to consideration
the particularities of the model which has: ability to
create its own structure; recursive space
partitioning; ability to deal with more inputs than other
neuro-fuzzy system; and recursive
fuzzy rules. The original NFHB system, however, is unsuited
for pattern classification. The
original NFHB model has only one output and its use in
classification problems makes it
necessary to create a criterion of band value (windows) in
order to represent the classes.
Therefore, it was decided to create new models that could
overcome this deficiency.
Two new NFHB systems were developed for pattern
classification: NFHB-Invertido
and NFHB-Class. The first one creates its structure using
the same learning algorithm of the
original NFHB system. After the structure has been created,
it is inverted (see chapter 5) for
the generalization process. The inversion of the structure
provides the system with the number
of outputs equal to the number of classes in the database.
The second system, the NFHB-Class
uses an inverted version of the original basic NFHB cell in
both phases, learning and
validation. Both systems proposed have the number of
outputs equal to the number of the
pattern classes, what means a great differential in
relation to the original NFHB model.
Besides the pattern classification objective, the NFHB-
Class system was able to extract
knowledge in form of interpretable fuzzy rules. These rules
are expressed by this way: If x is
A and y is B then the pattern belongs to Z class.
The two models developed have been tested in many case
studies, including
Benchmark databases for classification task, such as: Iris
Dataset, Wine Data, Pima Indians
Diabetes Database, Bupa Liver Disorders and Heart Disease,
where comparison has been
made with several traditional models and algorithms of
pattern classification.
The results found with NFHB-Invertido and NFHB-Class
models, in all cases, showed
to be superior or equal to the best results found by the
others models and algorithms for
pattern classification. The performance of the NFHB-
Invertido and NFHB-Class models in
terms of time-processing were also very good. For all
databases described in the case studies
(chapter 8), the models converged to an optimal
classification solution, besides the fuzzy rules
extraction, in a time-processing inferior to a minute. / [es] Esta disertación investiga el uso de sistemas Neuro- Fuzzy
Herárquicos BSP (Binary Space Partitioning) en problemas de
clasificación de padrones y de extracción de reglas fuzzy
en bases de datos. El objetivo de este trabajo fue crear
modelos específicos para clasificación de registros a
partir del modelo Neuro-Fuzzy Jerárquico BSP que es capaz
de generar automáticamente su propia extructura y extraer
reglas fuzzy, lingüisticamente interpretables, que explican
la extructura de los datos. El principio de la
clasificación de padrones es descubrir relaciones entre los
datos con la intención de prever la clase de un padrón
desconocido. El trabajo está constituido por cuatro partes:
un estudio sobre los principales métodos de clasificación
de padrones; análisis del sistema Neuro-Fuzzy Jerárquico
BSP (NFHB) original en la clasificación; definición e
implementación de dos sistemas NFHB específicos para
clasificación de padrones; y el estudio de casos. En el
estudio de los métodos de clasificación se realizó un
levatamiento bibliográfico, creando un "survey" donde se
presentan las principales técnicas utilizadas. Entre las
principales técnicas se destacan: los métodos estadísticos,
algoritmos genéticos, árboles de decisión fuzzy, redes
neurales, y los sistemas neuro-fuzzy. En el análisis del
sistema NFHB para clasificación de datos se tuvieron en
cuenta las peculiaridades del modelo, que posee :
aprendizaje de la extructura, particionamiento recursivo
del espacio de entrada, acepta mayor número de entradas que
los otros sistemas neuro-fuzzy, además de reglas fuzzy
recursivas. El sistema NFHB, sin embargo, no es un modelo
exactamente desarrollado para clasificación de padrones. El
modelo NFHB original posee apenas una salida y para
utilizarlo conmo un clasificador fue necesario crear un
criterio de intervalos de valores (ventanas) para
representar las clases. Así, se decidió crear nuevos
modelos que supriman esta deficiencia. Se definieron dos
nuevos sistemas NFHB para clasificación de padrones: NFHB-
Invertido y NFHB-Clas. El primero utiliza la arquitectura
del modelo NFHB original en el aprendizaje y en seguida la
inversión de la arquitectura para la validación de los
resultados. La inversión del sistema es un medio para
adaptar el nuevo sistema, específicamente a la
clasificación, ya que el sistema pasó a tener número de
salidas igual al número de clases, al contrario del
criterio de intervalo de valores utilizado en el modelo
NFHB original. En el sistema NFHB-Clas se utilizó, tanto
para la fase de aprendizajeo, cuanto para la fase de
validación, el modelo NFHB original invertido. Ambos
sistemas poseen el número de salidas igual al número de
clases de los padrones, lo que representa una gran
diferencia en relación al modelo NFHB original. Además del
objetivo de clasificación de padrones, el sistema NFHB-Clas
fue capaz de extraer conocimento en forma de reglas fuzzy
interpretables. Esas reglas se expresan de la siguiente
manera: Si x es A e y es B entonces el padrón pertenece a
la clase Z. Se realizó un amplio estudio de casos,
utilizando diversas bases de datos Benchmark para la
clasificación, tales como: Iris Dataset, Wine Data, Pima
Indians Diabetes Database, Bupa Liver Disorders y Heart
Disease. Los resultados se compararon con diversos modelos
y algoritmos de clasificación de padrones. Los resultados
encontrados con los modelos NFHB-Invertido y NFHB-Clas se
mostraron, en la mayoría de los casos, superiores o iguales
a los mejores resultados encontrados por los otros modelos
y algoritmos con los cuales fueron comparados. El desempeño
de los modelos NFHB-Invertido y NFHB-Clas en relación al
tiempo de procesamiento tambiém se mostró muy bien. Para
todas las bases de datos descritas en el estudio de casos
(capítulo 8), los modelos convergieron para una solución
óptima, además de la extracción de las reglas fuzzy, con
tiemp
|
Page generated in 0.0303 seconds