• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] A NEW LAYERED APPROACH TO BIOLOGICAL DATA REPRESENTATION AND ITS APPLICATIONS COMPARING SEQUENCES / [pt] UMA NOVA ABORDAGEM EM CAMADAS PARA REPRESENTAÇÃO DE DADOS BIOLÓGICOS E SUAS APLICAÇÕES EM COMPARAÇÃO DE SEQUÊNCIAS

DIOGO MUNARO VIEIRA 09 December 2024 (has links)
[pt] A identificação e categorização de proteínas homólogas são tarefas fundamentais no campo da biologia, que dependem de ferramentas que analisam sequências de nucleotídeos ou aminoácidos. No entanto, a detecção automatizada de padrões evolutivos, assim como outras características, usando métodos tradicionais, ainda apresenta desafios científicos. Neste estudo, propomos uma nova abordagem de representação de dados em camadas, que permite explorar padrões evolutivos e outras características de sequências na busca por similaridades, classificação e agrupamento. Utiliza-se um processo livre de alinhamento e são propostos novos algoritmos de similaridade que permitem aprimorar a eficácia dessa abordagem. Esses algoritmos utilizam técnicas inspiradas na percepção humana para capturar similaridades dentro das representações de moléculas biológicas. Avaliações experimentais demonstram bom desempenho e alta precisão em comparação com abordagens propostas anteriormente. Essa representação em camadas se mostra promissora na identificação de proteínas similares, principalmente com características de homólogas distantes. Além disso, sugere-se também o desenvolvimento de novos métodos e algoritmos de aprendizado de máquina em bioinformática que envolvam a privacidade e segurança de dados biológicos. / [en] The identification and categorization of homologous proteins are fundamental tasks in the field of biology, relying on tools that analyze nucleotide oramino acid sequences. However, automated detection of evolutionary patternsand additional attributes using traditional methods still presents research challenges. In this study, we propose a novel layered data representation approachthat allows us to explore evolutionary patterns and other sequence features insimilarity searching, classification, and clustering. It employs an alignment-freeprocess, and we introduce new similarity algorithms to enhance the effectiveness of this approach. These algorithms leverage techniques inspired by humanperception to capture subtle similarities within biological molecules representations. Experimental evaluations demonstrate good performance and high accuracy compared to previously proposed approaches. This layered representationshows promise in identifying similar proteins, especially with distant homologscharacteristics. Furthermore, it also suggests the development of new methods and machine learning (ML) algorithms in bioinformatics that address theprivacy and security of biological data.

Page generated in 0.0252 seconds