• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] GEOMETRIC MAGNETIC DISCRIMINATOR SENSOR FOR SMART PIGS / [pt] SENSOR GEOMÉTRICO MAGNÉTICO DISCRIMINADOR PARA PIGS INSTRUMENTADOS

VINICIUS DE CARVALHO LIMA 05 January 2005 (has links)
[pt] Este trabalho apresenta o desenvolvimento de um sensor inovador combinando três técnicas de inspeção utilizadas nos Pigs Instrumentados Geométrico e Magnético, para a detecção e caracterização de defeitos na geometria em tubulações de aço. O sensor GMD, Geométrico Magnético Discriminador, faz a leitura magnética do duto através da técnica de campo de fuga magnético, com a adição da leitura geométrica além da discriminação de defeitos internos de externos. A combinação dessas três tecnologias habilita a construção de uma ferramenta de inspeção de alta resolução compacta e capaz de identificar e quantificar, com apenas uma coroa de sensores, amassamentos, perdas de espessura e além da sua combinação. Este estudo se apresenta em um momento oportuno, já que a Integração de dados é o ponto fundamental da recente norma de gerenciamento de ricos em dutos, API 1160, na qual combinando os resultados das inspeções de geometria e corrosão, tem-se uma melhor avaliação de risco. Testes foram realizados utilizando um PIG Plano com corpos de prova contendo defeitos variados. Os resultados verificaram que o sensor GMD quantifica e discrimina amassamentos com perda de espessura. Aspectos técnicos do desenvolvimento como os detalhes construtivos do sensor, testes de avaliação a resultados de laboratório são apresentados. / [en] This thesis presents the development of an innovative sensor head for detection and characterization of geometric defects in steel pipes that combines three inspection techniques usually employed separately in Caliper and Magnetic Flux Leakage (MFL) PIGs. The novel Geometric Magnetic Discriminator (GMD) sensor performs high- resolution magnetic pipeline readings using MFL with the addition of internal pipe geometry evaluations and discrimination between internal and external defects. The combination of these technologies in a single sensor facilitates characterization of dents and corrosions, while at the same time optimizing the PIG set-up. According to the repair criteria in the standard API1160, combined defects such as a dent with metal loss, which in the past could only be detected through combined data of two different runs (MFL+ Caliper), must be repaired immediately. The GMD sensor was tested in a linear test rig, known as Flat Pig, and data were taken from different defect sets. Evaluation tests demonstrated that the GMD sensor sizes and discriminates a dent with metal loss. Technical aspects of the development, e.g.: the construction details of the sensor, evaluation tests and laboratory results are presented.
2

[en] DEVELOPMENT OF AN AUTOMATED SYSTEM, BASED ON THE CONCEPT OF EVOLUTIONARY HARDWARE, AIMED AT DETERMINING THE OPTIMAL OPERATING POINT OF GMI SENSORS / [pt] DESENVOLVIMENTO DE UM SISTEMA AUTOMATIZADO, BASEADO NO CONCEITO DE HARDWARE EVOLUCIONÁRIO, PARA DETERMINAÇÃO DO PONTO ÓTIMO DE OPERAÇÃO DE SENSORES GMI

JAIRO DANIEL BENAVIDES MORA 14 November 2017 (has links)
[pt] Elementos sensores baseados no efeito GMI são uma nova família de sensores magnéticos que apresentam grande quando submetidos a campos magnéticos externos. Estes sensores têm sido utilizados no desenvolvimento de magnetômetros de alta sensibilidade, destinados à medição de campos ultra fracos. Por sua vez, a sensibilidade de um magnetômetro está diretamente associada à sensibilidade de seus elementos sensores. No caso de amostras GMI, esta sensibilidade é otimizada buscando-se a maximização da variação do módulo ou da fase da impedância em função do campo magnético ao qual a amostra é submetida. Estudos recentes mostram que transdutores GMI baseados na variação de fase podem exibir sensibilidades até 100 vezes superiores às apresentadas por transdutores baseados na leitura do módulo do elemento sensor, o que fez com que os trabalhos conduzidos nesta dissertação focassem na maximização da sensibilidade de fase, a qual é majoritariamente dependente de quatro fatores: o comprimento da amostra, o campo magnético externo, o nível DC e a frequência da corrente de excitação. Contudo, a busca do conjunto de parâmetros que otimiza a sensibilidade das amostras é geralmente empírica e muito demorada. Esta dissertação propõe uma nova técnica de otimização da sensibilidade, baseada no uso de algoritmos genéticos evoluindo em hardware, a fim de se definir qual o conjunto de parâmetros responsável pela maximização da sensibilidade das amostras. Ressalta-se que, além dos parâmetros de otimização anteriormente explicitados, também foram realizados testes considerando a amplitude da corrente de excitação como uma variável livre, sendo que os resultados obtidos são apresentados e discutidos. Foi implementada uma bancada de testes e desenvolvida uma interface gráfica em LabVIEW, para monitorar e medir o comportamento da impedância de amostras GMI em função de variações nos parâmetros de interesse. Por sua vez, implementou-se um módulo de otimização em Matlab, baseado em algoritmos genéticos, responsável por encontrar a combinação de parâmetros que maximiza a sensibilidade dos sensores GMI avaliados (ponto ótimo de operação). / [en] GMI sensors are a new family of magnetic sensors that exhibit a huge variation of their impedance when subjected to external magnetic fields. These sensors have been used in the development of high sensitivity magnetometers, aimed at measuring ultra-weak magnetic fields. In turn, the sensitivity of a magnetometer is directly associated with the sensitivity of their sensor elements. In the case of GMI samples, this sensitivity is optimized by maximizing the variation of the impedance magnitude or phase as a function of the magnetic field applied to the sample. Recent studies show that GMI transducers based on phase variation can exhibit sensitivities up to 100 times higher than those presented by transducers based on impedance magnitude readings. The results obtained in these previous studies made the current work focusing on the maximization of phase sensitivity, which is mostly dependent on four factors: sample length, external magnetic field, DC level and frequency of the excitation current. However, the search for the set of parameters that optimizes the sensitivity of the samples is usually empirical and very time consuming. Thus, this dissertation proposes a new optimization technique, based on the use of genetic algorithms evolving on hardware, in order to define which set of parameters is responsible for maximizing the sensitivity of the samples. It should be noted that in addition to the optimization parameters previously described, this work also carried out tests considering the amplitude of the excitation current as a free variable, and the results obtained are presented and discussed. A test bench was implemented and a graphical interface was developed in LabVIEW to monitor and measure the impedance behavior of GMI samples due to variations in the parameters of interest. In turn, a Matlab optimization module based on genetic algorithms was implemented, in order to find the combination of parameters that maximizes the impedance phase sensitivity of the evaluated GMI sensors (optimum operating point).
3

[en] HIGH SENSITIVITY GMI MAGNETOMETER FOR THE MEASUREMENT OF ULTRA-WEAK MAGNETIC FIELDS / [pt] MAGNETÔMETRO GMI DE ALTA SENSIBILIDADE PARA MEDIÇÃO DE CAMPOS MAGNÉTICOS ULTRA-FRACOS

EDUARDO COSTA DA SILVA 18 July 2018 (has links)
[pt] Esta Tese teve por objetivo desenvolver um magnetômetro de alta sensibilidade, baseado nas características de fase do efeito da Magnetoimpedância Gigante (GMI – Giant Magnetoimpedance), para medição de campos magnéticos ultra-fracos. Elementos sensores GMI apresentam grande potencial na fabricação de magnetômetros que conciliem alta sensibilidade e elevada resolução espacial com baixo custo. A otimização da sensibilidade do transdutor magnético é diretamente afetada pela sensibilidade de seus elementos sensores GMI, cuja maximização é um processo intrinsecamente multivariável. Consequentemente, a metodologia experimental empregada iniciou-se pelo desenvolvimento de um sistema automático de caracterização das amostras GMI, de modo a se garantir a agilidade do processo de caracterização, possibilitando a obtenção de um volume significativo de informações experimentais. A análise minuciosa dos dados provenientes das medições experimentais permitiu a definição do ponto ótimo de operação das amostras GMI estudadas. Em todas as medições experimentais realizadas foram obtidas e avaliadas as curvas de histerese das amostras GMI. Na sequência, foram idealizados circuitos eletrônicos para condicionamento das amostras GMI e leitura das características de fase de sua impedância, destacandose a configuração eletrônica desenvolvida para a amplificação da sensibilidade de fase. Foram, inclusive, depositadas patentes nacionais e internacionais referentes ao método proposto e ao novo transdutor magnético GMI (PI 0902770-0; PI 1004686-0; WO/2010/094096 e WO/2012/048395). As caracterizações e ensaios experimentais realizados indicaram a eficácia da abordagem proposta, evidenciando o grande potencial do magnetômetro GMI desenvolvido, o qual apresentou uma elevada sensibilidade de 5 mV/nT. A resolução do magnetômetro foi limitada pelo ruído magnético ambiental, indicando que sua capacidade de medição de campos inferiores aos níveis de ruído poderá ser claramente evidenciada quando for avaliada em ambiente magneticamente blindado. Os estudos teórico-experimentais realizados indicam o potencial do transdutor magnético GMI desenvolvido, caracterizado por seu baixo custo e elevada sensibilidade, para aplicação na medição de campos magnéticos ultra-fracos. / [en] This Thesis aimed at developing a high sensitivity magnetometer, based on the phase characteristics of the Giant Magnetoimpedance effect (GMI), for measuring ultra-weak magnetic fields. GMI sensor elements have great potential to implement magnetometers that combine high sensitivity and high spatial resolution with low cost. The optimization of the magnetic transducer sensitivity is directly affected by the sensitivity of its GMI sensor elements, whose maximization is inherently multivariate. Consequently, the first step of the experimental methodology employed was to develop an automatic system for the characterization of GMI samples, so as to ensure the agility of the characterization process, allowing the gathering of a significant amount of experimental data. A thorough analysis of the experimental data led to the definition of the optimal operation point of the analyzed GMI samples. The hysteresis curves of the GMI samples were obtained and evaluated, in all of the performed experimental measurements. Based on the characterization studies results, electronic circuits were designed for conditioning the GMI samples and reading their impedance phase characteristics, highlighting the new electronic configuration developed for enhancing the phase sensitivity. National and international patents were filed, related to the proposed method, for sensitivity enhancement, and to the new GMI magnetometer (PI 0902770-0; PI 1004686-0; WO/2010/094096 e WO/2012/048395). The performed experimental characterizations and assays indicated the effectiveness of the proposed approach, showing the great potential of the developed GMI magnetometer, which presents a high sensitivity of 5 mV/nT. The magnetometer resolution was limited by the environmental magnetic noise, pointing out their capability in measuring fields below the environmental noise level, which can be clearly evidenced only when evaluated in a magnetically shielded room. The theoretical and experimental studies carried out indicate the potential of the developed GMI magnetic transducer, characterized by its low cost and high sensitivity, for applications involving the measurement of ultra-weak magnetic fields.
4

[en] METHODS TO HOMOGENIZE THE IMPEDANCE PHASE CHARACTERISTICS OF GMI SENSORS / [pt] MÉTODOS PARA HOMOGENEIZAÇÃO DAS CARACTERÍSTICAS DE FASE DA IMPEDÂNCIA DE SENSORES GMI

19 November 2021 (has links)
[pt] A utilização de magnetômetros possibilita o diagnóstico não invasivo e inócuo das variáveis fisiológicas já mensuradas pelos procedimentos padrão e oferece informações complementares sobre outras variáveis fisiológicas. Fontes biológicas geram densidades de fluxo magnético com ordem de grandeza entre 1 nT e 1 fT, com frequências até 1 kHz. Essas grandezas são ínfimas quando comparadas com a gerada pelo planeta, que é da ordem de 20 uT e está onipresente na atmosfera. Portanto, para mensurar campos biomagnéticos, é necessário atenuar essa interferência eletromagnética, sendo empregadas câmaras magneticamente blindadas e/ou transdutores em configuração gradiométrica. As câmaras blindadas apresentam alto desempenho de filtragem, mas têm elevado custo e pouca praticidade. Uma configuração gradiométrica utiliza uma leitura diferencial de dois ou mais elementos sensores idênticos, melhorando significativamente a relação sinal/ruído com baixo custo de implementação. Seu funcionamento se baseia na premissa de que os sensores têm comportamento idêntico. No entanto, foi observado que as fitas GMI, mesmo apresentando a mesma composição química e mesmas dimensões físicas, não apresentam as mesmas variações de fase para uma mesma variação do campo magnético. Ou seja, foi constatado um comportamento heterogêneo das amostras, o que impossibilitaria o desenvolvimento de um gradiômetro baseado nesses sensores. Diante deste impedimento, foi considerado o desenvolvimento de um circuito capaz de homogeneizar as variações de impedância entre duas amostras, quando associado a uma delas. Assim, a presente dissertação apresenta três métodos para a homogeneização das características de fase de amostras GMI e identifica o mais adequado para aplicações biomédicas. / [en] The use of magnetometers enables noninvasive and innocuous physiological variables already measured by standard procedures, and in certain cases, such as the Magnetocardiography offers additional information on other physiological variables diagnosis. Typically, the human heart generates a magnetic field with flux magnitude and frequency of 1 nT to 1 kHz. These quantities are minuscule compared with Earth s magnetic field, which is of the order of 20 uT and is omnipresent in the atmosphere. Therefore, to measure biomagnetic fields, it is necessary to reduce this and other electromagnetic interference, magnetically shielded cameras and transducers in gradiometric configuration are commonly used. Shielded cameras feature high performance filter, but have high cost and little practicality. A gradiometric configuration uses a differential reading of two or more identical sensor elements, significantly improving the signal/noise ratio with low implementation cost. However, its operation based on the premise that the sensors have identical behavior. Unfortunately, it was found that GMI ribbons, despite having the same chemical composition and same physical dimensions does not present the same phase variations for the same variation in magnetic field. That is, a heterogeneous behavior of the samples, which would prevent the development of a gradiometer based on these sensors. Given this impairment, it was considered developing a circuit capable of homogenizing the variations in impedance between two samples when associated with them. Thus, this paper presents three distinct characteristics of the homogenization phase samples GMI methods and identifies the most suitable for biomedical applications through a comparative analysis of the performance of the methods.

Page generated in 0.0318 seconds