• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] STRUCTURAL INTEGRITY OF INELASTIC PIPES SUBMITTED TO HYDRAULIC TRANSIENTS / [pt] INTEGRIDADE ESTRUTURAL DE TUBULAÇÕES ANELÁSTICAS SUBMETIDAS A TRANSIENTES HIDRÁULICOS

FELIPE BASTOS DE FREITAS RACHID 08 March 2018 (has links)
[pt] Neste trabalho, apresentam-se modelos mecânicos para previsão da integridade estrutural de tubulações anelásticas conduzindo líquidos, submetidas a transientes hidráulicos. A descrição do fenômeno de transiente hidráulico é feita com base em duas formulações unidimensionais: uma acoplada e outra desacoplada. A formulação acoplada considera a interação dinâmica fluido-estrutura entre os movimentos do fluido e do tubo, enquanto que a desacoplada refere-se ao modelo tradicional de golpe de ariete. A integridade da tubulação é modelada com base na Mecânica do Dano Continuo. O comportamento anelástico da parede do tubo assim como o dano induzido pela deformação anelástica são descritos por uma teoria constitutiva com variáveis internas e forte respaldo termodinâmico. A teoria engloba um grande número de equações constitutivas encontradas na literatura e permite descrever diferentes respostas mecânicas numa mesma estrutura matemática. As equações resultantes para ambos os modelos - acoplado e desacoplado - formam um sistema não linear de equações diferenciais parciais hiperbólicas. Apesar da forte não linearidade, mostra-se que métodos numéricos clássicos podem ser empregados para resolver as equações quando se utiliza uma técnica de decomposição do operador. No trabalho, emprega-se entre outros o método de Glimm. Exemplos numéricos que retratam a evolução do dano induzida por transientes de pressão em tubulações elasto-viscopláticas são apresentados e analisados. Comparações realizadas entre as previsões dos modelos e entre simulações com e sem dano permitem, na análise, caracterizar as influências do acoplamento fluido-estrutura e do dano. / [en] This work presents mechanical models for structural failure prediction of compliant inelastic pipings conveying liquids, submitted to hydraulic transients. Hydraulic transients are described based on two, a coupled and an uncoupled, onedimensional formulations. The coupled formulation takes into account the dynamical fluid-structure interaction between fluid flow and pipewall motions, whereas the uncoupled one refers to the well-known waterhammer model. Piping integrity is modelled on the basis of the Continuum bamage Mechanics. Both pipewall inelastic mechanical behavior and damage induced by inelastic deformations are described by an internal variable constitutive theory with strong thermodynamical support. It encompasses a great number of constitutive equations found in the literature and allows the treatment of several different mechanical responses within a same mathematical framework. The resulting equations of both coupled and uncoupled transient models forma non linear system of hyperbolic partial differential equations. In spite of its strong non linearity, it is shown that classical numerical methods can be used for solving the equations whether a operator splitting technique is employed. Among others, Glimm s scheme has been used in this work. Numerical examples concerning the damage evolution induced by pressure transients in elasto-viscoplastic pipings are presented and analysed. Comparisons between the predictions of the models and simulations with and without damage are presented, so that the fluid-structure coupling and the damage influences on the analysis are investigated.

Page generated in 0.029 seconds