• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] STATE SPACE MODELS FOR IBNR RESERVES ESTIMATION: ROW-WISE STACKING THE RUNOFF TRIANGLE / [pt] ESTIMAÇÃO DE RESERVAS IBNR POR MODELOS EM ESPAÇO DE ESTADO: EMPILHAMENTO POR LINHAS DO TRIÂNGULO RUNOFF

RODRIGO SIMOES ATHERINO 15 June 2009 (has links)
[pt] Este trabalho versa sobre previsão de reservas do tipo IBNR levando-se em conta uma ordenação diferente do triângulo de runoff incremental. Esta se dá por linhas empilhadas, originando, assim, uma série temporal univariada repleta de valores faltantes, cuja soma desses valores constitui o IBNR a ser estimado. Duas abordagens de estimação, inteiramente baseadas na teoria dos modelos em Espaço de Estado e do filtro de Kalman, são desenvolvidas, implementadas com dados reais de empresas seguradoras, e comparadas entre si e a outros métodos de estimação já consagrados na literatura atuarial. A primeira abordagem pauta-se no cálculo da matriz de covariâncias condicionais das componentes do IBNR, e a segunda é um processo de obtenção do IBNR por acumulação. Os resultados obtidos revelam, para as abordagens propostas, os seguintes pontos sumários: (i) plena eficiência e viabilidade computacional; (ii) sistemático ganho em termos de acurácia do IBNR estimado; e (iii) abrangência no que diz respeito às possibilidades de modelagem estatística dos dados de IBNR. / [en] This work deals with prediction of IBNR reserves under a different ordering of the non-cumulative runoff triangle. This is accomplished by stacking the rows, which results in a univariate time series with several missing values, whose corresponding sum is in fact the IBNR. Two estimation approaches, entirely based on state space methods and Kalman filtering, are developed, implemented with real data, and compared with some well established estimation methods for IBNR. The first approach consists in obtaining the conditional covariance matrix of the IBNR components, and the second tackles the IBNR estimation under an accumulation process. Three remarks emerge from the empirical results: (i)computational feasibility and efficiency; (ii)precision improvement for IBNR estimation; and (iii)flexibility in which concerns the IBNR modelling framework.
2

[en] A POISSON-LOGNORMAL MODEL TO FORECAST THE IBNR QUANTITY VIA MICRO-DATA / [pt] UM MODELO POISSON-LOGNORMAL PARA PREVISÃO DA QUANTIDADE IBNR VIA MICRO-DADOS

JULIANA FERNANDES DA COSTA MACEDO 02 February 2016 (has links)
[pt] O principal objetivo desta dissertação é realizar a previsão da reserva IBNR. Para isto foi desenvolvido um modelo estatístico de distribuições combinadas que busca uma adequada representação dos dados. A reserva IBNR, sigla em inglês para Incurred But Not Reported, representa o montante que as seguradoras precisam ter para pagamentos de sinistros atrasados, que já ocorreram no passado, mas ainda não foram avisados à seguradora até a data presente. Dada a importância desta reserva, diversos métodos para estimação da reserva IBNR já foram propostos. Um dos métodos mais utilizado pelas seguradoras é o Método Chain Ladder, que se baseia em triângulos run-off, que é o agrupamento dos dados conforme data de ocorrência e aviso de sinistro. No entanto o agrupamento dos dados faz com que informações importantes sejam perdidas. Esta dissertação baseada em outros artigos e trabalhos que consideram o não agrupamento dos dados, propõe uma nova modelagem para os dados não agrupados. O modelo proposto combina a distribuição do atraso no aviso da ocorrência, representada aqui pela distribuição log-normal truncada (pois só há informação até a última data observada); a distribuição da quantidade total de sinistros ocorridos num dado período, modelada pela distribuição Poisson; e a distribuição do número de sinistros ocorridos em um dado período e avisados até a última data observada, que será caracterizada por uma distribuição Binomial. Por fim, a quantidade de sinistros IBNR foi estimada por método e pelo Chain Ladder e avaliou-se a capacidade de previsão de ambos. Apesar da distribuição de atrasos do modelo proposto se adequar bem aos dados, o modelo proposto obteve resultados inferiores ao Chain Ladder em termos de previsão. / [en] The main objective of this dissertation is to predict the IBNR reserve. For this, it was developed a statistical model of combined distributions looking for a new distribution that fits the data well. The IBNR reserve, short for Incurred But Not Reported, represents the amount that insurers need to have to pay for the claims that occurred in the past but have not been reported until the present date. Given the importance of this reserve, several methods for estimating this reserve have been proposed. One of the most used methods for the insurers is the Chain Ladder, which is based on run-off triangles; this is a format of grouping the data according to the occurrence and the reported date. However this format causes the lost of important information. This dissertation, based on other articles and works that consider the data not grouped, proposes a new model for the non-aggregated data. The proposed model combines the delay in the claim report distribution represented by a log normal truncated (because there is only information until the last observed date); the total amount of claims incurred in a given period modeled by a Poisson distribution and the number of claims occurred in a certain period and reported until the last observed date characterized by a binomial distribution. Finally, the IBNR reserve was estimated by this method and by the chain ladder and the prediction capacity of both methods will be evaluated. Although the delay distribution seems to fit the data well, the proposed model obtained inferior results to the Chain Ladder in terms of forecast.

Page generated in 0.0242 seconds