• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] ENSAIOS EM PREDIÇÃO DO TEMPO DE PERMANÊNCIA EM UNIDADES DE TERAPIA INTENSIVA / [en] ESSAYS ON LENGTH OF STAY PREDICTION IN INTENSIVE CARE UNITS

IGOR TONA PERES 28 June 2021 (has links)
[pt] O tempo de permanência (LoS) é uma das métricas mais utilizadas para avaliar o uso de recursos em Unidades de Terapia Intensiva (UTI). Esta tese propõe uma metodologia estruturada baseada em dados para abordar três principais demandas de gestores de UTI. Primeiramente, será proposto um modelo de predição individual do LoS em UTI, que pode ser utilizado para o planejamento dos recursos necessários. Em segundo lugar, tem-se como objetivo desenvolver um modelo para predizer o risco de permanência prolongada, o que auxilia na identificação deste tipo de paciente e assim uma ação mais rápida de intervenção no mesmo. Finalmente, será proposto uma medida de eficiência ajustada por case-mix capaz de realizar análises comparativas de benchmark entre UTIs. Os objetivos específicos são: (i) realizar uma revisão da literatura dos fatores que predizem o LoS em UTI; (ii) propor uma metodologia data-driven para predizer o LoS individual do paciente na UTI e o seu risco de longa permanência; e (iii) aplicar essa metodologia no contexto de um grande conjunto de UTIs de diferentes tipos de hospitais. Os resultados da revisão da literatura apresentaram os principais fatores de risco que devem ser considerados em modelos de predição. Em relação ao modelo preditivo, a metodologia proposta foi aplicada e validada em um conjunto de dados de 109 UTIs de 38 diferentes hospitais brasileiros. Este conjunto continha um total de 99.492 internações de 01 de janeiro a 31 de dezembro de 2019. Os modelos preditivos construídos usando a metodologia proposta apresentaram resultados precisos comparados com a literatura. Estes modelos propostos têm o potencial de melhorar o planejamento de recursos e identificar precocemente pacientes com permanência prolongada para direcionar ações de melhoria. Além disso, foi utilizado o modelo de predição proposto para construir uma medida não tendenciosa para benchmarking de UTIs, que também foi validada no conjunto de dados estudado. Portanto, esta tese propôs um guia estruturado baseado em dados para gerar predições para o tempo de permanência em UTI ajustadas ao contexto em que se deseja avaliar. / [en] The length of stay (LoS) in Intensive Care Units (ICU) is one of the most used metrics for resource use. This thesis proposes a structured datadriven methodology to approach three main demands of ICU managers. First, we propose a model to predict the individual ICU length of stay, which can be used to plan the number of beds and staff required. Second, we develop a model to predict the risk of prolonged stay, which helps identifying prolonged stay patients to drive quality improvement actions. Finally, we build a case-mix-adjusted efficiency measure (SLOSR) capable of performing non-biased benchmarking analyses between ICUs. To achieve these objectives, we divided the thesis into the following specific goals: (i) to perform a literature review and meta-analysis of factors that predict patient s LoS in ICUs; (ii) to propose a data-driven methodology to predict the numeric ICU LoS and the risk of prolonged stay; and (iii) to apply this methodology in the context of a big set of ICUs from mixed-type hospitals. The literature review results presented the main risk factors that should be considered in future prediction models. Regarding the predictive model, we applied and validated our proposed methodology to a dataset of 109 ICUs from 38 different Brazilian hospitals. The included dataset contained a total of 99,492 independent admissions from January 01 to December 31, 2019. The predictive models to numeric ICU LoS and to the risk of prolonged stay built using our data-driven methodology presented accurate results compared to the literature. The proposed models have the potential to improve the planning of resources and early identifying prolonged stay patients to drive quality improvement actions. Moreover, we used our prediction model to build a non-biased measure for ICU benchmarking, which was also validated in our dataset. Therefore, this thesis proposed a structured data-driven guide to generating predictions to ICU LoS adjusted to the specific environment analyzed.

Page generated in 0.0414 seconds