• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5897
  • 1902
  • 688
  • 680
  • 261
  • 225
  • 148
  • 128
  • 103
  • 75
  • 74
  • 74
  • 74
  • 74
  • 74
  • Tagged with
  • 12658
  • 2240
  • 1696
  • 1575
  • 1341
  • 991
  • 837
  • 831
  • 815
  • 688
  • 687
  • 663
  • 659
  • 627
  • 615
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

STUDY OF GAS ADSORPTION ON AS-PRODUCED AND MODIFIED CARBON NANOTUBES

Rawat, Dinesh Singh 01 December 2010 (has links)
AN ABSTRACT OF THE DISSERTATION OF DINESH SINGH RAWAT, for the Doctor of Philosophy degree in APPLIED PHYSICS, presented on July 6 2009, at Southern Illinois University Carbondale. TITLE: STUDY OF GAS ADSORPTION ON AS-PRODUCED AND MODIFIED CARBON NANOTUBES MAJOR PROFESSOR: Dr. Aldo D. Migone Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.
542

FOREST CARBON MAPPING AND SPATIAL UNCERTAINTY ANALYSIS: COMBINING NATIONAL FOREST INVENTORY DATA AND LANDSAT TM IMAGES

Fleming, Andrew Lawrence 01 May 2011 (has links)
Being able to accurately map forest carbon is a critical step in the global carbon cycle modeling and management process. This project is aimed at enhancing the current methodologies used for forest carbon mapping, and applying a method to account for any errors produced. By doing so, more accurate decisions can be made based on the knowledge gained from forest carbon maps; such as policy decisions on how to manage forests, or how to mitigate climate change. The use of remotely sensed images, in combination with Forest Inventory and Analysis (FIA) data, is one such way of doing this. This study compared three different methods; including linear regression, cosimulation, and up-scaled cosimulation to interpolate forest carbon based on a defined relationship between sample plots of national FIA data and satellite images. An uncertainty analysis was completed in an effort to quantify, and separate the different sources of error produced within a cosimulation mapping effort. The results indicated that the band ratio of TM4 / TM5 + TM4 / TM7 had the highest correlation coefficient, around 0.56, with the FIA forest carbon values. At a resolution of 90 m ×by 90 m, co-simulation predicted carbon values from about 14 Mg/ha, to 135 Mg/ha. The regression model, at the same resolution, estimated carbon values from about -17 Mg/ha, to 2,400 Mg/ha. Up-scaled cosimulation at a resolution of 990 m x× 990 m, predicted carbon values of ranging from 16 Mg/ha, to 133 Mg/ha. The uncertainty analysis was unable to produce any statistically significant results, with all R2 values below 0.1. These results showed that using a linear regression produced some impossible estimates, while cosimulation led to more realistic values. However, no conclusion can be made when comparing the methods based on the map validation techniques used. Although limited validation of the results was conducted, using both the FIA data and some independent sampling data; further work that focuses on validation is recommended.
543

The strength of hybrid composites

Pitkethly, M. J. January 1987 (has links)
The strength of carbon fibres in unidirectional hybrid composites of glass and carbon fibres have been investigated. It has been shown that the strength distributions of bundles of carbon fibres impregnated with resin, both unsupported and in a hybrid, may be described by the Weibull model confirming earlier reports. The primary objective of this work has been to investigate the strength and the state of dispersion of the carbon component. Hybrid composites consisting of accurately aligned arrays of bundles in two and three dimensions have been fabricated and tested. It has been shown that the strength decreases when the bundle spacing is less than a critical distance but at very low spacings the strength begins to increase again. This observation is explained with reference to the fracture behaviour and the implications for practical composites are discussed. The hybrid composites exhibit a greater strength over impregnated bundles. An hypothesis is proposed to explain this phenomena which combines thermal effects with the constraining influence of the glass and the differences in the severity of flaws in hybrid bundles. The last two arguments result in a larger critical group of failed fibres being required in the hybrid before catastrophic failure occurs. The type of hybrid specimen tested in this work enables the fracture process in the composite to be followed closely. The investigation has in principle supported the model for composite strength proposed by Batdorf, the "critical i-plet" model. However, experimental evidence indicated that a slightly different fracture process to that proposed by Batdorf was operating. The significance of this fracture process with respect to the strength and the size effect in composites is discussed.
544

An investigation of reaction parameters for carbon dioxide utilisation

Silvestre Gonzalez, Vanessa January 2017 (has links)
Carbon dioxide emissions per year have risen exponentially. It is widely known the contribution of CO2 to global warming phenomena, so storage/utilisation of carbon dioxide has become a topical issue and an emerging research area. Despite the fact that utilization of CO2 waste would not solve the problem of the huge quantities going to the atmosphere every year as only less than 1% of it could be reused for the industry, recycled carbon dioxide presents itself as a possible cheap and accessible chemical feedstock. The challenge on recycling CO2 is to minimize energy and cost efficiency of any suitable reaction. On previous investigations the electrochemical synthesis of 5-membered cyclic carbonate from epoxides was accomplished under mild conditions and optimized (1 atm CO2 pressure, 60 mA constant current and 50 °C heating). In order to understand the mechanism of this electrochemical process a deep investigation on the variables of the synthesis of cyclic carbonates was carried out and is presented in this thesis. The variables studied include electrochemical system conditions (application of current through Cu/Mg electrodes, electrodes connected on a closed circuit system with no current, an open circuit system where electrodes were there was no connection between them, and reactions without electrodes), temperature of reaction, solvent screening, catalysts, epoxide substituents, concentration of species and ratio of reactants. As a result of the variables optimization, a new, cheap, simple and relatively fast method (5 to 24 hours of reaction time) for cyclic carboxylation of epoxides with CO2 at atmospheric pressure in acetonitrile in the presence of ammonium salt (TBAI) at mild temperatures (50-75 °C) has been developed and improved. The concentration of the reactants, especially of the epoxide, was found to be the most important factor on the success of the reaction. The new reaction conditions also allow converting epoxides to carbonates without the help of any cocatalyst or electrochemical system obtaining excellent yields (50-100%) with the important saving on cost and energy of co-catalyst synthesis and recovery. Chlorostyrene oxide (1 M) reacted almost completely (94%) after 24 hours with TBAI (1 M), in 1 mL of acetonitrile at 75 °C and 1 atm pressure of CO2. Epoxide carboxylation under neat conditions was feasible, producing 44% of chlorostyrene carbonate from chlorostyrene oxide in the presence of TBAI at 75 °C and 1 atm pressure of CO2.
545

The Role of Carbon Nanotubes in the Hydrogenation of Carbon Monoxide

Jeffers, Matt 01 December 2010 (has links)
This paper presents the culmination of an investigation on carbon nanotubes as catalysts for the hydrogenation of carbon monoxide. Carbon nanotubes (CNTs) have been found to have extraordinary physical properties and the potential for use in a variety of applications. They have been utilized as catalyst supports in many reactions, including the conversion of syngas to ethanol. The specific role played by CNTs in these reactions, aside from that of a support structure, has not been evaluated, however. Presented here are parametric studies on Fischer-Tropsch Synthesis with carbon nanotubes as active catalysts. The use of as-produced CNTs (containing trace amounts of iron from the synthesis process) resulted in a 100-fold increase in carbon monoxide conversion per unit mass of catalyst over a traditional Fe-Zn-K/γ-alumina catalyst. This value (CO conversion per unit mass of catalyst) was raised to nearly 1500 times as high as for Fe-Zn-K/γ-alumina when purified CNTs were used in the same FT synthesis. Because iron is a primary catalyst in the FT synthesis, it can be argued that the iron in the CNTs was responsible for the catalytic behavior. However, the iron content in the MWNTs (0.014 g, ≈ 5 mass%) and SWNTs (0.04 g, ≈ 27 mass%) compared to that of the traditional iron-loaded alumina support (2.5 g, ≈ 12.5 mass%), strongly suggests that iron alone cannot be responsible for the catalysis. Although single-walled nanotube (SWNT) catalysts provided high CO conversion, methane represented the bulk of the products. Conversely, multi-walled nanotubes (MWNTs) produced mostly liquid hydrocarbons and oxygenates, indicating that the CNT structure is an important factor in the hydrogenation of CO. The parametric experiments show that temperature, pressure and the syngas composition all play key roles in the distribution of liquid products. In general, an increase in temperature correlated to an increase in hydrocarbon chain length and the formation of more alcohols; above a certain temperature, the distribution shifted to 100% alcohols. Likewise, lower pressures resulted in hydrocarbons of shorter carbon chain length and at higher pressures, more alcohols were formed. Studies were also conducted on the effect of syngas composition and the effect of different types of CNTs. Syngas with 1:1 ratio (H2:CO) produced longer hydrocarbon chains than those produced by 3:1 syngas. The type of CNTs used in FT also affected the products but no clear relationships could be discerned.
546

THERMODYNAMIC EVALUATION OF PROCESSES FOR HYDROGEN PRODUCTION FROM CARBONACEOUS FUEL

Kaini, Bhanu 01 December 2010 (has links)
This research work presents the thermodynamic analysis of hydrogen production using steam methane reforming process at different conditions. The model is developed using HSC 4.1 software and spreadsheet. Methane is chosen to represent the carbonaceous fuel and steam methane reforming process (once through and cyclic) for hydrogen production is analyzed based on 1st law and 2nd law of thermodynamics i.e., energetic and exergetic efficiencies. The mass, energy and exergy analysis of each step is done. The optimal condition for production of maximum hydrogen is found using CO2 removal agent and O2 transfer compound. The efficiency is calculated as a function of steam content, temperature and amount of CO2 removal agent and O2 transfer compound. The pressure is kept constant at one atmosphere. Operating temperature, CaO loading, Fe2O3 loading and H2O content is determined from the once through process. It is found that the maximum H2 production is with the cyclic process. Maximum H2 produced in cyclic process with CaO & Fe2O3 loadings is 99.2%. Also CO2 content is comparatively lower in cyclic process. Theoretical efficiencies can be used to compare with the available data which will help to minimize the losses in the process. The results can be used as a baseline for the design of H2 production technology. The main aim of this research is to develop a thermodynamic protocol for evaluating hydrogen production processes.
547

Synthesis, Characterization, and Adaptability of Carbon Nanotube-Based Solid Lubricants

Church, Amelia Heather-Sarah 01 May 2010 (has links)
Solid lubricants possessing low friction coefficients, low wear rates, and long wear lives are vital for significantly increasing the life span of instruments undergoing extreme frictional wear due to harsh environments. Solid lubricants currently used in high temperatures or excess humidity, such as MoS2, WS2, graphite, or noble metals, are unable to sustain superior frictional qualities over extended amounts of time or in changing environments. To ameliorate these limiting properties, a composite solid lubricant is produced to enable the favorable frictional properties of one lubricant to overcome the lacking frictional properties of the other. This composite uses the combined materials to produce a solid lubricant that can sustain a low friction coefficient and wear rate for a longer amount of time than each individual material. MoS2 electrodeposited on to carbon nanotubes (CNTs) has a lower friction coefficient in humid (~0.16), non-humid (~0.05) and non-humid/humid cycled (~0.075-0.2) environments than either bare MoS2 or bare CNTs. Similarly, silver deposited on CNTs, by electrodeposition, electroless deposition, and sputter coating, performs better in room temperature, high temperature (500°C), and room temperature/high temperature cycling environments than either of its individual materials. Using the techniques used to produce these solid lubricant composite coatings with appealing frictional properties will provide a variety of tribological applications involving high temperature and/or high humidity environments with necessary solutions and further facilitate the improvement of solid lubricants used in other extreme environments.
548

FISCHER-TROPSCH SYNTHESIS IN SUPERCRITICAL PHASE CARBON DIOXIDE: DEACTIVATION STUDIES

Carron, David 01 August 2011 (has links)
ABSTRACT This thesis presents the results of investigations regarding the effect of supercritical CO2 on the long term activity, life and deactivation rates of an Fe-Zn-K catalyst during Fischer Tropsch Synthesis from syngas (H2:CO =1:1) typically produced from coal gasification. Previous studies at SIUC on FTS in Supercritical CO2 (SC-CO2) have shown that CH4 selectivity was inhibited and with the presence of excess CO2, the WGS reaction was reversed. This increased the carbon economy as result of the reduction in parasitic loss of CO to CO2. In addition, it was observed that the conversion of CO, under these pressures and CO2 dilution, was significantly enhanced. Studies in a continuous flow system showed the use of SC-CO2 affected the distribution of hydrocarbons, mainly producing heavier hydrocarbons (diesel fuel). In this thesis, results from four long term experiments (21-28 day) varying the CO2:syngas ratio are reported. The experiments were conducted at 350 oC, 1200 psi with a feed rate of 200sccm in a fixed bed supercritical reactor with a volume of 150 cc. The results show that the conversion of syngas increased from 47% to 95% at the optimum ratio 5:1 (CO2:Syngas). The steady state reaction rate constant also increased 4.756 times the baseline run from 0.021215 min-1 to 0.100907 min-1, for pure syngas and a CO2:syngas ratio of 5:1 respectively. The deactivation rate did not improve with the use of supercritical CO2; however, the life span of the catalyst more than doubled that of the base line run with an increase in SC- CO2. Product tailoring can also be performed by simply changing the SC-CO2:Syngas ratio. Ratios less than 5:1 will yield a product distribution of predominately alcohols, ratios greater than 5:1 produce heavier hydrocarbons. Both of these product distributions can be beneficial, but for this research a ratio of 5:1 yielded the desired product distribution of light to heavy hydrocarbons generically known as gasoline and diesel fuel. Liquid selectivity was observed to increase with CO2 content in the feed upto a CO2:syngas ratio of 5:1, thereafter it declined slightly. CO2 is produced in the experiment of pure syngas with no Sc-CO2, however the introduction of Sc-CO2 resulted in the consumption of CO2 for the production of hydrocarbons. The methane selectivity was found to monotonically decrease with the increase in CO2 content in the feed. With oil prices increasing, the use of SC- CO2 as a reaction media for FTS is showing more promise in providing liquid fuels more effectively. The evidence of consumption of CO2 means that CO2 does not need to be removed from the syngas feed stream after the gasification and water gas shift unit processes. The increase in the observed life of the catalyst under supercritical conditions will ultimately reduce the operating cost as less material will be needed to produce the same amount of product allowing for FTS to become economically competitive.
549

Factors affecting the detritiation of carbon acids

Sowdani, Kassim M. K. January 1987 (has links)
The work presented in this thesis falls into four parts. In Chapter 1 results are presented for the detritiation of a number of substituted 2-([3H]-acetyl) thiophenes. These show that when a carboxyl group is present adjacent to the ionising acetyl group intramolecular catalysis makes an important contribution to the overall rate although the effective molarity is no higher than the other base catalysed proton transfers previously reported in the literature. Proton transfer reactions involving the ionisation of carbon acids have usually been studied in aqueous conditions. In Chapter 2 the development of a detritiation procedure for non-aqueous conditions is reported and the method used to establish an order of basicity for a large number of amines in dimethyl sulphoxide. The following chapter extends the investigation carried out in Chapter 2 to a range of other solvents. The results show a marked similarity in relative rates for detritiation of acetophenone as catalysed by a number of amines in these solvents. The ability of enzymes to catalyse many reactions under very mild conditions has prompted chemists to investigate whether they can design molecules that are just as effective. In the last chapter a preliminary investigation has been made to see how amines, when they are part of a macromolecular framework, perform as catalysts.
550

Desenvolvimento de espumas de poliuretano revestidas com formas alotrópicas de carbono para utilização como sorvente de petróleo e outras substâncias orgânicas

Fenner, Bruna Rossi 28 November 2017 (has links)
Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-12-14T16:41:19Z No. of bitstreams: 1 Dissertacao Bruna Rossi Fenner.pdf: 220146 bytes, checksum: a7f5cbcc6e19b186d2881bf8ef62274a (MD5) / Made available in DSpace on 2017-12-14T16:41:19Z (GMT). No. of bitstreams: 1 Dissertacao Bruna Rossi Fenner.pdf: 220146 bytes, checksum: a7f5cbcc6e19b186d2881bf8ef62274a (MD5) Previous issue date: 2017-12-14

Page generated in 0.0663 seconds