• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algumas Aplicações de Integrais de Trajetória Grassmannianas na Teoria Quântica Moderna / Some Applications of Grassmannianas Trajectory Integrals in Modern Quantum Theory

Paulo Barbosa Barros 29 October 1998 (has links)
Este trabalho é dedicado à aplicação de integrais de trajetória de Grassmann para o cálculo de operadores relevantes aos problemas da teoria quântica relativística. Primeiramente uma visão geral detalhada do método é fornecida. Então concentramos nas definições e aplicações das integrais de trajetória sobre as variáveis de Grassmann. Discutimos, em detalhe, um importante papel das integrais de trajetória de Grassmann na representação de propagadores de partículas relativísticas. Derivamos o chamado fatores de spin para tais representações, fazendo as integrações Grasmannianas. Uma contribuição completamente original foi feita aplicando tais integrais ao cálculo de operadores. Derivamos, desta forma, um conjunto de fórmulas novas para as funções de operadores das matrizes y. A aplicações de tais fórmulas são apresentadas. / This work is devoted to an application of Grassmann path integrals to operator calculus relevant to problems of relativistic quantum theory. A detailed survey of path integral method is given first. Then we concentrate ourselves on definitions and applications of path integrals over Grassmann variables. We discuss in detail an important role of Grassmann path integrals in representations of relativistic particle propagators. We derive the so called spin factors for such representations doing Grassmann integrations. A completely original contribution was made in application of such integrals to operator calculus. We have derived in such a way a set of new formulas for operator functions of y-matrices. Applications of such formulas are presented.
2

Algumas Aplicações de Integrais de Trajetória Grassmannianas na Teoria Quântica Moderna / Some Applications of Grassmannianas Trajectory Integrals in Modern Quantum Theory

Barros, Paulo Barbosa 29 October 1998 (has links)
Este trabalho é dedicado à aplicação de integrais de trajetória de Grassmann para o cálculo de operadores relevantes aos problemas da teoria quântica relativística. Primeiramente uma visão geral detalhada do método é fornecida. Então concentramos nas definições e aplicações das integrais de trajetória sobre as variáveis de Grassmann. Discutimos, em detalhe, um importante papel das integrais de trajetória de Grassmann na representação de propagadores de partículas relativísticas. Derivamos o chamado fatores de spin para tais representações, fazendo as integrações Grasmannianas. Uma contribuição completamente original foi feita aplicando tais integrais ao cálculo de operadores. Derivamos, desta forma, um conjunto de fórmulas novas para as funções de operadores das matrizes y. A aplicações de tais fórmulas são apresentadas. / This work is devoted to an application of Grassmann path integrals to operator calculus relevant to problems of relativistic quantum theory. A detailed survey of path integral method is given first. Then we concentrate ourselves on definitions and applications of path integrals over Grassmann variables. We discuss in detail an important role of Grassmann path integrals in representations of relativistic particle propagators. We derive the so called spin factors for such representations doing Grassmann integrations. A completely original contribution was made in application of such integrals to operator calculus. We have derived in such a way a set of new formulas for operator functions of y-matrices. Applications of such formulas are presented.

Page generated in 0.0558 seconds