Spelling suggestions: "subject:"algebras dde kacmoody"" "subject:"algebras dde baroody""
1 |
Álgebras de Kac-Moody afim não torcidas como extensão central de álgebras de loopMaduro Junior, Alan Kardec Fonseca, 92-99170-6360 31 August 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-12-26T14:38:05Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Alan Kardec F. Maduro Junior.pdf: 1198326 bytes, checksum: 70f99bbc57b61df1295eefe1782be793 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-12-26T14:38:35Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Alan Kardec F. Maduro Junior.pdf: 1198326 bytes, checksum: 70f99bbc57b61df1295eefe1782be793 (MD5) / Made available in DSpace on 2017-12-26T14:38:35Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Alan Kardec F. Maduro Junior.pdf: 1198326 bytes, checksum: 70f99bbc57b61df1295eefe1782be793 (MD5)
Previous issue date: 2017-08-31 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the 1960s, Victor G. Kac and Robert V. Moody, working independently, provided
a generalization of finite semisimple Lie algebras by means of the so-called generalized
Cartan matrix (GCM). Such Lie algebras, discovered by Kac and Moody, are called
Kac-Moody algebras and are usually infinite-dimensional algebras. This dissertation
is devoted to the study of non-twisted affine Kac-Moody algebras, more precisely, the
main result of this work is to provide a concrete construction (realization) of these
algebras by means of a loop algebra where the base algebra is a finite dimensional
simple Lie algebra. / Na década de 60, Victor G. Kac e Robert V. Moody, com trabalhos independentes,
forneceram uma generalização das álgebras de Lie semissimples de dimensão finita
por meio da chamada matriz de Cartan generalizada (MCG). Tais álgebras de Lie,
encontradas por Kac e Moody, são denominadas álgebras de Kac-Moody e geralmente
são álgebras de dimensão infinita. Basicamente, a dissertação é dedicada ao estudo das
álgebras de Kac-Moody afim não torcidas, mais precisamente, o resultado principal
deste trabalho é fornecer uma construção (realização) concreta dessas álgebras por
meio de uma álgebra de loop onde a álgebra base é uma álgebra de Lie simples de
dimensão finita.
|
2 |
Realização de campos livres de álgebras de Kac-Moody afim / Free fields realization of affine Kac-Moody algebrasAlves, Marcela Guerrini 08 August 2016 (has links)
Este trabalho tem como objetivo principal estudar módulos irredutíveis sobre as álgebras de Kac-Moody afim, conforme [7]. Em particular, a técnica de localização foi aplicada aos módulos de Verma imaginários sobre a álgebra de Lie afim A(1)1, com o objetivo de obter novos módulos irredutíveis sobre essa álgebra. Conforme [8] e [6], é o mesmo que aplicar a técnica de localização à primeira realização de campos livres de A(1)1 .Para cumprir o objetivo, introduzimos as álgebras de Kac-Moody, tendo como foco principal as álgebras de Kac-Moody do tipo afim, conforme [14]. Em seguida, definimos os módulos de Verma,destacando os módulos de Verma imaginários sobre a álgebra de Lie afim A(1)1, conforme [8]. / The main purpose of this work is to study the irreducible modules of affine Kac-Moody algebras,according to [7].In particular, the localization technique was applied to the imaginary Verma modules of affine Lie algebra A(1)1, with the purpose to obtain new irreducible modules of this algebra. According to[8] and [6], it is the same as to apply the localization technique to the first realization of free fields of A(1)1.To achieve the purpose, we introduced the Kac-Moody algebras, having the main focus the af-fine Kac-Moody algebras, according to [14]. Following, we defined the Verma modules, highlighting imaginary Verma modules of affine Lie algebra A(1)1, according to [8].
|
3 |
Realização de campos livres de álgebras de Kac-Moody afim / Free fields realization of affine Kac-Moody algebrasMarcela Guerrini Alves 08 August 2016 (has links)
Este trabalho tem como objetivo principal estudar módulos irredutíveis sobre as álgebras de Kac-Moody afim, conforme [7]. Em particular, a técnica de localização foi aplicada aos módulos de Verma imaginários sobre a álgebra de Lie afim A(1)1, com o objetivo de obter novos módulos irredutíveis sobre essa álgebra. Conforme [8] e [6], é o mesmo que aplicar a técnica de localização à primeira realização de campos livres de A(1)1 .Para cumprir o objetivo, introduzimos as álgebras de Kac-Moody, tendo como foco principal as álgebras de Kac-Moody do tipo afim, conforme [14]. Em seguida, definimos os módulos de Verma,destacando os módulos de Verma imaginários sobre a álgebra de Lie afim A(1)1, conforme [8]. / The main purpose of this work is to study the irreducible modules of affine Kac-Moody algebras,according to [7].In particular, the localization technique was applied to the imaginary Verma modules of affine Lie algebra A(1)1, with the purpose to obtain new irreducible modules of this algebra. According to[8] and [6], it is the same as to apply the localization technique to the first realization of free fields of A(1)1.To achieve the purpose, we introduced the Kac-Moody algebras, having the main focus the af-fine Kac-Moody algebras, according to [14]. Following, we defined the Verma modules, highlighting imaginary Verma modules of affine Lie algebra A(1)1, according to [8].
|
Page generated in 0.0665 seconds