Spelling suggestions: "subject:"change océanatmosphère"" "subject:"change planteatmosphère""
1 |
Améliorations aux paramétrages de la couche limite atmosphérique en Arctique dans le modèle canadien de prévision GEMCarpentier, Pierre-Luc January 2009 (has links) (PDF)
Le but de ce projet est d'améliorer la représentation numérique des processus turbulents de couche limite stable (CLS) sur l'océan Arctique dans le modèle Global Environnemental Multi-échelles (GEM). L'expérience numérique réalisée consiste à simuler le climat observé durant la campagne SHEBA d'un an sur un petit domaine régional à haute résolution (110 x 120 @ 0,5 degré) centré sur la mer de Beaufort. Dans la simulation de contrôle effectuée avec la version non modifiée de GEM, le modèle surestime systématiquement le vent de surface Ūr, la vitesse de friction u* et le flux de chaleur latente (HL) qui est 6 fois trop intense l'été en comparaison des valeurs observées au point SHEBA. De plus, le modèle n'arrive pas à simuler les vents faibles observés (Ūr < 1,6 m/s) et manifeste un biais sec persistant dans la CLS durant toute l'année. En comparant la fonction de stabilité utilisée dans GEM øGEM avec les observations de la campagne SHEBA, on remarque que ce paramétrage mène à une surestimation du mélange turbulent en stratification très stable (RiB > 10¯²) qui pourrait expliquer une partie des erreurs du modèle. L'implémentation d'une fonction de stabilité dérivée à partir des observations de SHEBA øSHEBA dans la simulation de sensibilité
A a permis d'améliorer Ūr et u* dans le modèle GEM. La longueur de rugosité de la glace de mer utilisée dans le modèle GEM zo,GEM = 0,16 mm aussi ne correspond pas aux observations de la campagne SHEBA. En fait, l'unique paramètre zo,GEM utilisé par GEM est trop faible pour le transfert de quantité de mouvement et trop grande pour le transfert de chaleur et d'humidité. L'implémentation des longueurs de rugosité observées à SHEBA (zom,SHEBA et zoh,SHEBA) dans la simulation de sensibilité B a amélioré Ūr simulé. Le vent minimal Ūmin = 2,5 m/s est un autre paramètre utilisé par GEM qui est susceptible d'être inadéquat pour simuler la CLS. Ce paramètre est utilisé pour éviter une division par zéro par vent faible lors du calcul du nombre de Richardson RiB. En utilisant une valeur plus réaliste de Ūmin = 1,0 m/s dans la simulation de sensibilité C, on arrive à simuler les vents faibles (Ūr < 1,6 m/s) qui n'étaient pas simulés par la version originale du modèle GEM. Dans la simulation D, l'implémentation d'une nouvelle équation diagnostique basée sur l'équation de Clausius-Clapeyron pour qr a éliminé complètement le biais sec dans le modèle. Indirectement, la correction à qr a ramené le HL simulé très près des valeurs observées en réduisant le gradient vertical qr -qs responsable de l'évaporation à la surface. Tous les modèles régionaux participant au projet ARCMIP avaient des défauts semblables (biais sec, HL surestimé et u* trop intense) à ceux du modèle GEM pour une expérience très similaire. Il est donc très probable que l'implémentation des mêmes modifications dans ces modèles soit aussi bénéfique. Il est aussi probable qu'en implémentant ces paramétrages dans les modèles participant au Coupled Model Intercomparison Project (CMIP) ait un effet bénéfique sur l'océan Arctique.
______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modélisation du climat arctique, Couche limite atmosphérique, Interaction atmosphère-glace-
océan, Paramétrisation physique.
|
2 |
Vitesse d'échange gazeux à l'interface air-eau : étude méthodologique et facteurs influentsVachon, Dominic 07 1900 (has links) (PDF)
Une portion importante du cycle du carbone se situe au niveau des échanges gazeux entre l'eau et l'atmosphère. L'importance de ces flux est accentuée par l'enjeu des changements climatiques et de la gestion des gaz à effet de serre. Il reste cependant plusieurs aspects de ce processus qui sont mal compris et plusieurs biais persistent dans la méthodologie. Dans le but d'améliorer les techniques d'échantillonnage, la possibilité d'utiliser la turbulence pour prédire la vitesse d'échange gazeux (k) a été explorée et l'hypothèse que la chambre flottante engendre de la turbulence artificielle a aussi été testée. De plus, dans le but d'unifier les diverses relations entre le vent et k, plusieurs variables facilement mesurables combinées à la vitesse du vent ont été testés. Les données de cette étude ont été échantillonnées d'une part dans le réservoir hydroélectrique d'Eastmain-1 et d'autres parts dans 11 lacs en Estrie, Québec. La vitesse d'échange gazeux à été mesuré in situ à l'aide d'une chambre flottante. Plusieurs variables météorologiques dont la turbulence de l'eau ainsi que quelques variables limnologiques ont aussi été mesurés. Un modèle robuste a été élaboré en utilisant la turbulence de l'eau à l'intérieur de la surface d'échantillonnage de la chambre pour expliquer k. Il a aussi été démontré la chambre flottante surestime k et cela est due à la turbulence à l'intérieur de la surface d'échantillonnage créée par celle-ci. Le rapport de surestimation peut atteinte dix fois la valeur réelle et ensuite diminue plus la turbulence naturelle du système augmente. Finalement, il a été montré que l'ajout de l'aire du système aux vitesses de vents dans une régression multiple améliore grandement la prédiction de k dans une variété de systèmes aquatiques différents. En apportant de meilleurs outils de mesure et d'estimation des vitesses d'échanges gazeux, cette étude permettra d'améliorer la précision des estimations des émissions de gaz à effet de serre provenant des milieux aquatiques terrestres.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : échanges gazeux, dioxyde de carbone, interface air-eau, turbulence, chambre flottante
|
3 |
Développement d'une stratégie de couplage NODEM-NARCM via le modèle océanique GOTMBensaid, Samira January 2008 (has links) (PDF)
Dans le cadre du développement d'un outil numérique couplé atmosphère-océan-biogéochimie permettant de lier les processus physiques et biogéochimiques et de mieux comprendre la rétroaction entre l'océan et l'atmosphère, nous avons couplé la version unidimensionnelle du modèle atmosphérique NARCM (MLC) au modèle océanique GOTM et au modèle biogéochimique NODEM. Le but de ce travail consistait, d'une part, à développer le modèle couplé NODEM-GOTM-MLC et, d'autre part, à valider et évaluer ce modèle couplé au niveau de l'Hydrostation S en mer des Sargasses durant l'année 1992. Ceci a été réalisé tout en étudiant l'ensemble des processus physiques et biogéochimiques influençant la production du DMS océanique et la ventilation du DMS vers l'atmosphère. Pour réaliser le couplage NODEM-GOTM-MLC, la stratégie suivie consistait au développement d'une interface permettant les échanges des champs atmosphériques et océaniques nécessaires au forçage de surface. Par ailleurs, afin de valider notre modèle couplé NODEM-GOTM-MLC, nous avons comparé, d'une part, les flux d'énergie en surface simulés par le modèle avec ceux de ré-analyses NCEP et, d'autre part, le cycle annuel de la Chla et du DMS(Pp) avec les données d'observations disponibles au niveau de l'Hydrostation S pour l'année 1992. Le résultat de cette recherche montre que le modèle couplé est capable de reproduire les principaux composants du flux net d'énergie d'une manière adéquate. De plus, par comparaison avec l'ancienne version NODEM-GOTM, les simulations des cycles du DMS et du DMSPp ont été améliorées suite au couplage avec MLC. Cette nouvelle version est notamment capable de simuler les trois principaux pics du DMS présents dans les données d'observations. Cette amélioration se traduit quantitativement lors du calcul des coefficients de détermination, qui confirment que cette nouvelle version est mieux corrélée aux observations que l'ancienne. Nous avons conclu notre travail en montrant que le modèle NODEM-GOTM-MLC capte la majorité des événements locaux qui se produisent à petite échelle et à l'échelle saisonnière, en dépit du fait qu'il possède des limitations liées aux erreurs des paramétrages du modèle et à l'incapacité du modèle ID à simuler certains types d'événements. Finalement, cette étude montre qu'une meilleure simulation de tous les composants du système climatique améliore la production du DMS océanique qui sera ventilé vers l'atmosphère. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : couplage, échanges atmosphère-océan-biogéochimique, DMS, NODEM-GOTM-MLC, version ID de NARCM
|
Page generated in 0.1544 seconds