Spelling suggestions: "subject:"écoulement dde fluides"" "subject:"écoulement dee fluides""
1 |
Etude du couplage hydromécanique dans les roches par analyse d'images obtenues par tomographie neutronique / Coupled hydro-mechanics of reservoir rocks studied by quantitative in-situ neutron imagingEtxegarai Aldami Etxebarria, Maddi 21 January 2019 (has links)
Le comportement des roches-réservoirs souterraines est un sujet important pour de nombreuses applications liées à la production d’énergie (extraction d’hydrocarbures, séquestration de CO2, ...). L'une des principales questions posées est celle de l'effet des déformations sur les propriétés de transfert hydraulique de la roche, en particulier en conditions saturées. En effet, la déformation des géomatériaux est rarement homogène en raison de conditions aux limites complexes et de sa tendance intrinsèque à se localiser. Cette non-uniformité spatiale de la déformation produit un champ de perméabilité hétérogène. Cela remet en question la validité (a) des méthodes traditionnelles d'analyse macroscopique et (b) des mesures établies principalement loin des zones de déformation localisée. Ainsi, pour améliorer la caractérisation des géo-matériaux, il est crucial d’avoir des mesures locales de la perméabilité, et de connaître la relation entre la déformation et la perméabilité, qui gouverne leur comportement hydraulique.Cette thèse porte sur l’étude du couplage hydromécanique des roches par tomographie aux neutrons et aux rayons X, ainsi que sur le développement de nouvelles méthodes d'analyse. Même si le recours à l'imagerie par rayons X en géosciences devient de plus en plus accessible, la détection directe des fluides a été très limitée en raison du faible contraste air/eau dans les géomatériaux. Contrairement aux rayons X, les neutrons sont très sensibles à l’hydrogène présent dans l'eau. La radiographie par neutrons permet donc d'obtenir des images où la détection du fluide est bien plus facile. De plus, les neutrons sont sensibles aux isotopes, ce qui veut dire que l’eau lourde et celle normale, qui ont des propriétés physico-chimiques proches, peuvent être distinguées avec une grande précision. Il faut noter que l’imagerie aux neutrons pour les roches est un domaine expérimental qui est essentiellement inexploré, ou limité à des études 2D d'échantillons secs, avec peu ou pas de contrôle sur les conditions aux limites.Dans le cadre de ce travail, nous avons conçu une nouvelle cellule triaxiale, avec un contrôle asservi, pour effectuer des expériences d'écoulement de fluides multiples dans un échantillon de roche saturé et chargé mécaniquement avec acquisition des données neutroniques en 4D. Une autre originalité du projet est l'utilisation d'installations d'imagerie neutroniques à haute performance (CONRAD-2 au Helmholtz Zentrum à Berlin et NeXT à l'Institut Laue-Langevin à Grenoble), profitant de la technologie de pointe et des lignes de faisceaux les plus puissantes du monde. Cela a permis d'acquérir des données à une fréquence optimale pour notre étude.Ce travail présente les résultats de plusieurs campagnes expérimentales couvrant une série de conditions initiales et de conditions aux limites relativement complexes. Pour quantifier le couplage hydromécanique local, nous avons appliqué un certain nombre de procédures de post-traitement standard et nous avons également développé un ensemble de méthodes de mesure, par exemple pour suivre le front d’eau et déterminer les cartes de vitesse 3D. Les résultats montrent que la vitesse du front d’eau entraîné par imbibition dans un échantillon sec est augmentée à l’intérieur d'une bande de cisaillement compactante, tandis que la vitesse d’écoulement entraîné par la pression est réduite dans les échantillons saturés, quelque soit la réponse volumétrique de la bande de cisaillement (compactante / dilatante). La nature des données 3D et des analyses s'est révélée essentielle dans la caractérisation du comportement mécanique complexe des échantillons et de la vitesse d'écoulement qui en résulte.Les résultats expérimentaux obtenus contribuent à la compréhension de l'écoulement dans les matériaux poreux sous chargement, garantissent la pertinence de l'analyse et permettent d’etablir une méthode expérimentale pour d'autres campagnes hydromécaniques in-situ. / The behaviour of subsurface-reservoir porous rocks is a central topic in resource engineering industry and has relevant applications for hydrocarbon and water production or CO2 sequestration. One of the key open issues is the effect of deformations on the hydraulic properties of the host rock, specifically in saturated environments. Deformation in geomaterials is rarely homogeneous because of the complex boundary conditions they undergo as well as for their intrinsic tendency to localise. This non uniformity of the deformation yields a non uniform permeability field, meaning that the traditional macroscopic analysis methods are outside their domain of validity. These methods are in fact based on measurements taken at the boundaries of a tested sample, under the assumption of internal homogeneity. At this stage, our understanding is in need of direct measurements of the local fluid permeability and its relationship with localiseddeformation.This doctoral dissertation focuses on the acquisition of such local data about the hydro mechanical properties of porous geomaterials in full-field, adopting neutron and x-ray tomography, as well as on the development of novel analysis methods. While x-ray imaging has been increasingly used in geo-sciences in the last few decades, the direct detection of fluid has been very limited because of the low air/water contrast within geomaterials. Unlike x-rays, neutrons are very sensitive to the hydrogen in the water because of their interaction with matter (neutrons interact with the atoms’ nuclei rather than with the external electron shell as x-rays do). This greater sensitivity to hydrogen provides a high contrast compared to the rock matrix, in neutron tomography images that facilitates the detection of hydrogen-rich fluids. Furthermore, neutrons are isotope-sensitive, meaning that water (H 2 0) and heavy water (D20), while chemically and hydraulically almost identical, can be easily distinguished in neutron imaging.The use of neutron imaging to investigate the hydromechanical properties of rocks is a substantially under-explored experimental area, mostly limited to 2D studies of dry, intact or pre-deformed samples, with little control of the boundary conditions. In thiswork we developed a new servocontrolled triaxial cell to perform multi-fluid flow experiments in saturated porous media, while performing in-situ loading and acquiring 4-dimensional neutron data.Another peculiarity of the project is the use of high-performance neutron imaging facilities (CONRAD-2, in Helmholtz Zentrum Berlin, and NeXT-Grenoble, in Institut Laue-Langevin), taking advantage of the world’s highest flux and cutting edge technology to acquire data at an optimal frequency for the study of this processes. The results of multiple experimental campaigns covering a series of initial and boundary conditions of increasing complexity are presented in this work.To quantify the local hydro-mechanical coupling, we applied a number of standard postprocessing procedures (reconstruction, denoising, Digital Volume Correlation) but also developed an array of bespoke methods, for example to track the water front andcalculate the 3D speed maps.The experimental campaigns performed show that the speed of the water front driven by imbibition in a dry sample is increased within a compactant shear band, while the pressure driven flow speed is decreased in saturated samples, regardless of the volumetric response of the shear band (compactant/dilatant). The 3D nature of the data and analyses has revealed essential in the characterization of the complex mechanical behaviour of the samples and the resultant flow speed.The experimental results obtained contribute to the understanding of flow in porous materials, ensure the suitability of the analysis and set an experimental method for further in-situ hydromechanical campaigns.
|
2 |
Couplage mécano-fluidique pour le contact et le frottement à petites et à grandes échelles / Coupling mechanical frictional contact with interfacial fluid flow at small and large scalesShvarts, Andrei 20 March 2019 (has links)
Cette thèse traite du problème de l'écoulement d'un fluide dans des interfaces étroites entre des solides en contact sous un chargement normal, ce qui est important pour de nombreuses applications en tribologie, ingénierie et géophysique. Le traitement de ce problème nécessite de prévoir un couplage entre la mécanique des fluides et celle des solides. Les contraintes liées à la présence du contact, ainsi que les caractéristiques complexes de la géométrie de surface rajoutent un niveau de complexité significatif. Dans cette thèse, un solveur monolithique par éléments finis permettant la gestion du contact frottant, des écoulements visqueux incompressibles et du transfert des efforts induits par le fluide sur le solide est développé. De plus, la possibilité que le fluide se retrouve piégé dans des cavités délimitées par des zones de contact est prise en compte par l'élaboration d'un nouvel élément dit "de fluide piégé", qui utilise une loi de comportement compressible non linéaire. Le code résultant de cette méthode comprend des algorithmes d’analyse d’image permettant de distinguer les zones de contact, d’écoulement de fluide et de fluide piégé. En outre, le code convient aux approches de couplage uni- et bidirectionnel. Le cadre développé a été appliqué dans un premier temps à l'étude d'un fluide piégé entre un solide déformable présentant une surface de contact ondulée et un plan rigide. Pour un système soumis à une charge externe croissante, nous avons examiné l'évolution de la surface de contact et du coefficient de frottement global en fonction des propriétés du fluide et du solide, ainsi que de la pente du profil de surface. Nous avons ensuite étudié l’écoulement d’un fluide entre un plan rigide et un solide déformable avec une géométrie modèle ou une surface rugueuse. Nous avons obtenu une solution analytique approchée qui gouverne le flux de fluide à travers une interface de contact ondulée, et cette dernière a été comparée à nos résultats numériques. Enfin, nous avons montré pour un intervalle de paramètres physiquement pertinents, que le couplage unidirectionnel sous-estime, par rapport à une approche bidirectionnelle, la perméabilité de l’interface ainsi que la charge externe critique nécessaire à la fermeture de l’interface. Une loi phénoménologique raffinée de perméabilité macroscopique des interfaces de contact rugueuses a été proposée. Enfin, le cadre développé a été utilisé pour calculer l'évolution de la fuite de fluide à travers une interface de contact métal sur saphir en utilisant un comportement matériau élasto-plastique et des mesures réelles de la rugosité de surface. / This thesis deals with the problem of a thin fluid flow in narrow interfaces between contacting solids subject to a normal loading, which is relevant for a range of tribological and engineering applications, as well as for geophysical sciences. The treatment of this problem requires coupling between fluid and solid mechanics, further complicated by contact constraints and potentially complex geometrical features of contacting surfaces. In this thesis a monolithic finite-element framework for handling frictional contact, thin incompressible viscous flow and transfer of fluid-induced tractions to the solid is developed. Additionally, we considered fluid entrapment in "pools" delimited by contact patches and formulated a novel trapped-fluid element using a non-linear compressible constitutive law. This computational framework makes use of image analysis algorithms to distinguish between contact, fluid flow and trapped fluid zones. The constructed framework is suitable for both one- and two-way coupling approaches. First, the developed framework was applied to a study of a fluid trapped between a deformable solid with a wavy surface and a rigid flat. We showed how the contact area and the global coefficient of friction evolve under increasing external load, depending on fluid and solid properties and on the slope of the surface profile. Next, we studied a thin fluid flow between a rigid flat and a deformable solid with a model geometry or random surface roughness. An approximate analytical solution for the fluid flow across a wavy contact interface was derived and compared with numerical results. We showed that for a range of physically relevant parameters, one-way coupling underestimates the interface permeability and the critical external load needed to seal the interface, compared to the two-way approach. A refined non-local phenomenological law for macroscopic permeability of rough contact interfaces was proposed. Finally, the developed framework was used to calculate the evolution of the fluid leakage through a metal-to-sapphire contact interface using an elasto-plastic material behaviour and real measurements of surface roughness.
|
Page generated in 0.0724 seconds