• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluorescence X appliquée à l'étude du temps de fission de l'élément Z=120

Frégeau, M.O. 10 October 2011 (has links) (PDF)
L'étude de la réaction 238U + 64Ni 'a 6,6 MeV par nucléon nous a permis d'identifier des rayons X caractéristiques de l'élément Z = 120. Ces X caractéristiques ont été trouvés en coïncidence avec des fragments de fission des noyaux composés de 120 protons formés au cours de la réaction. La multiplicité de ces rayonnements rend possible l'extraction des informations sur la probabilité de formation par fusion dans la réaction étudiée du noyau de Z = 120 ainsi que sur le temps de fission de ce noyau.
2

Fluorescence X appliquée à l'étude du temps de fission de l'élément Z=120

Frégeau, Marc-Olivier 18 April 2018 (has links)
L'étude de la réaction ²³⁸U + ⁶⁴Ni à 6,6 MeV par nucléon nous a permis d'identifier des rayons X caractéristiques de l'élément Z = 120. Ces X caractéristiques ont été trouvés en coïncidence avec des fragments de fission des noyaux composés de 120 protons formés au cours de la réaction. La multiplicité de ces rayonnements rend possible l'extraction des informations sur la probabilité de formation par fusion dans la réaction étudiée du noyau de Z = 120 ainsi que sur le temps de fission de ce noyau.
3

A la recherche d'une signature de la formation et décroissance du système géant ”Z=184”

Golabek, Cédric 07 July 2009 (has links) (PDF)
Définir les limites de stabilité des systèmes nucléaires est un des enjeux de la physique nucléaire. Dans les collisions d'actinides sont formés les ensembles de nucléons les plus lourds que l'on peut produire sur terre. La collision 238U+238U, permettant de former le système géant 476184, est étudiée de manière théorique selon le modèle microscopique “Time Dependent Hartree Fock” pour une gamme d'énergie large sous et au-delà de la barrière coulombienne et également de manière expérimentale à des énergies proche de la barrière coulombienne jusque 20% au dessus de celle-ci (6.09-7.35 AMeV) ; le spectromètre VAMOS et un système de détection permettant de mesurer la masse, la charge, l'énergie et l'angle de diffusion (35±5°) de l'éjectile est utilisé On a mis en évidence qu'un transfert de masse important entre les deux noyaux d'Uranium (supérieur à 10 nucléons) menait à une dissipation totale de l'énergie cinétique dans les différents degrés de liberté du système géant et à une déformation importante de celui-ci au moment de sa décroissance. Le temps de vie du système géant est estimé à 10−21-10−20s. Ce temps serait suffisant pour sonder la formation de paires électrons-trous issus du vide quantique, processus jusqu'alors jamais prouvé expérimentalement. La synthèse de noyaux lourds riches en neutrons semble également envisageable dans ce type de réaction aux énergies proches de la barrière coulombienne lorsque l'énergie d'excitation des produits de réaction est moindre.

Page generated in 0.0846 seconds