Spelling suggestions: "subject:"élastomères thermoplastics (TPEs)"" "subject:"élastomères thermoplastic (TPEs)""
1 |
Supramolecular polymers azo-containing : photo-responsive block copolymer elastomers and homopolymersWang, Xin 12 1900 (has links)
Beaucoup d'efforts dans le domaine des matériaux polymères sont déployés pour
développer de nouveaux matériaux fonctionnels pour des applications spécifiques, souvent
très sophistiquées, en employant des méthodes simplifiées de synthèse et de préparation. Cette
thèse porte sur les polymères photosensibles – i.e. des matériaux fonctionnels qui répondent
de diverses manières à la lumière – qui sont préparés à l'aide de la chimie supramoléculaire –
i.e. une méthode de préparation qui repose sur l'auto-assemblage spontané de motifs
moléculaires plus simples via des interactions non covalentes pour former le matériau final
désiré. Deux types de matériaux photosensibles ont été ciblés, à savoir les élastomères
thermoplastiques à base de copolymères à blocs (TPE) et les complexes d'homopolymères
photosensibles.
Les TPEs sont des matériaux bien connus, et même commercialisés, qui sont
généralement composés d’un copolymère tribloc, avec un bloc central très flexible et des blocs
terminaux rigides qui présentent une séparation de phase menant à des domaines durs isolés,
composés des blocs terminaux rigides, dans une matrice molle formée du bloc central flexible,
et ils ont l'avantage d'être recyclable. Pour la première fois, au meilleur de notre connaissance,
nous avons préparé ces matériaux avec des propriétés photosensibles, basé sur la complexation
supramoléculaire entre un copolymère tribloc simple parent et une petite molécule possédant
une fonctionnalité photosensible via un groupe azobenzène. Plus précisément, il s’agit de la
complexation ionique entre la forme quaternisée d'un copolymère à blocs, le
poly(méthacrylate de diméthylaminoéthyle)-poly(acrylate de n-butyle)-poly(méthacrylate de
diméthylaminoéthyle) (PDM-PnBA-PDM), synthétisé par polymérisation radicalaire par
transfert d’atomes (ATRP), et l'orange de méthyle (MO), un composé azo disponible
commercialement comportant un groupement SO3
-. Le PnBA possède une température de
transition vitreuse en dessous de la température ambiante (-46 °C) et les blocs terminaux de
PDM complexés avec le MO ont une température de transition vitreuse élevée (140-180 °C, en
fonction de la masse molaire). Des tests simples d'élasticité montrent que les copolymères à
blocs complexés avec des fractions massiques allant de 20 à 30% présentent un caractère
élastomère. Des mesures d’AFM et de TEM (microscopie à force atomique et électronique à
ii
transmission) de films préparés à l’aide de la méthode de la tournette, montrent une corrélation
entre le caractère élastomère et les morphologies où les blocs rigides forment une phase
minoritaire dispersée (domaines sphériques ou cylindriques courts). Une phase dure continue
(morphologie inversée) est observée pour une fraction massique en blocs rigides d'environ
37%, ce qui est beaucoup plus faible que celle observée pour les copolymères à blocs neutres,
dû aux interactions ioniques. La réversibilité de la photoisomérisation a été démontrée pour
ces matériaux, à la fois en solution et sous forme de film.
La synthèse du copolymère à blocs PDM-PnBA-PDM a ensuite été optimisée en
utilisant la technique d'échange d'halogène en ATRP, ainsi qu’en apportant d'autres
modifications à la recette de polymérisation. Des produits monodisperses ont été obtenus à la
fois pour la macroamorceur et le copolymère à blocs. À partir d'un seul copolymère à blocs
parent, une série de copolymères à blocs partiellement/complètement quaternisés et complexés
ont été préparés. Des tests préliminaires de traction sur les copolymères à blocs complexés
avec le MO ont montré que leur élasticité est corrélée avec la fraction massique du bloc dur,
qui peut être ajustée par le degré de quaternisation et de complexation.
Finalement, une série de complexes d'homopolymères auto-assemblés à partir du PDM
et de trois dérivés azobenzènes portant des groupes (OH, COOH et SO3) capables
d'interactions directionnelles avec le groupement amino du PDM ont été préparés, où les
dérivés azo sont associés avec le PDM, respectivement, via des interactions hydrogène, des
liaisons ioniques combinées à une liaison hydrogène à travers un transfert de proton (acidebase),
et des interactions purement ioniques. L'influence de la teneur en azo et du type de
liaison sur la facilité d’inscription des réseaux de diffraction (SRG) a été étudiée. L’efficacité
de diffraction des SRGs et la profondeur des réseaux inscrits à partir de films préparés à la
méthode de la tournette montrent que la liaison ionique et une teneur élevée en azo conduit à
une formation plus efficace des SRGs. / Much effort in the area of polymer materials involves the development of new
functional materials for specific, often highly sophisticated, applications using simplified
methods of synthesis and preparation. This thesis focuses on photo-responsive polymers – i.e.
functional materials that respond in various ways to light – that are prepared with the aid of
supramolecular chemistry – i.e. a preparation method that relies on the spontaneous selfassembly
of simpler molecular building blocks via noncovalent interactions to form the final
targeted material. Two types of photo-responsive materials were targeted, namely block
copolymer thermoplastic elastomers (TPEs) and photo-responsive homopolymer complexes.
TPEs are well-known, even commercial, materials that are typically based on triblock
copolymers with a highly flexible middle block and rigid outer blocks that phase separate into
isolated domains of the hard, outer block phase within a matrix of the soft block phase, and
they have the advantage of being recyclable. For the first time, to our knowledge, we have
prepared such materials with photo-responsive properties based on supramolecular
complexation between a simpler parent triblock copolymer and a small molecule possessing
the photo-responsive functionality via an azobenzene group. Specifically, this involved the
ionic complexation of the quaternized form of a block copolymer, poly(dimethylaminoethyl
methacrylate)-poly(n-butyl acrylate)-poly(dimethylaminoethyl methacrylate) (PDM-PnBAPDM),
synthesized by atom transfer radical polymerization (ATRP), with methyl orange
(MO), a commercially available SO3
--functionalized azo-containing compound. PnBA has a
subambient glass transition (-46 °C) and the MO-complexed PDM outer blocks have a high
glass transition (140-180 °C, depending on the molecular weight). Simple elasticity tests show
that the complexed block copolymers with hard block weight fractions between about 20 and
30% have elastomeric character. AFM and TEM (atomic force and transmission electron
microscopies) of spin-coated films show a correlation between the elastomeric character and
morphologies where the hard block forms a dispersed minority phase (spherical and/or short
cylindrical domains). A continuous hard phase (inverted morphology) is observed for a hard
block content of around 37 wt %, which is much lower than found for neutral block
iv
copolymers due to ionic interactions. Reversible photoisomerization was demonstrated for
these materials in both solution and in film form.
The synthesis of the PDM-PnBA-PDM block copolymer was then optimized by using
the halogen exchange technique in ATRP, along with other modifications to the
polymerization recipe. Monodisperse products were obtained for both the macroiniaitor and
the block copolymer. Based on a single parent block copolymer, a series of partially/fully
quaternized and complexed block copolymers were prepared. Preliminary stretching tests on
the MO-complexed block copolymers showed that their elasticity is correlated with the hard
block content, which can be tuned by the degree of quaternization and complexation.
Finally, a series of homopolymer complexes self-assembled from PDM and
azobenzene derivatives bearing three different groups capable of directed interactions with the
amino moiety of PDM (OH, COOH and SO3
-) were prepared, where the azo derivative
associates with PDM via hydrogen-bonding interactions, by ionic bonding mixed with
hydrogen bonding through proton-transfer (acid-base) interactions, and by purely ionic
interactions via ion exchange procedures, respectively. The influence of the azo content and
bonding type on surface relief grating (SRG) inscription was investigated. The SRG
diffraction efficiencies and grating depths in spin-coated films show that ionic bonding and
high azo content leads to more efficient SRG formation.
|
Page generated in 0.0904 seconds