• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application de couplages de procédés baromembranaires et électromembranaires pour la séparation de peptides bioactifs d'hydrolysats de protéines de soya et étude du colmatage des membranes échangeuses d'ions par des peptides

Langevin, Marie-Eve 17 April 2018 (has links)
Le soya est une culture en pleine expansion au Canada. L’augmentation de la production au cours des dernières années a créé un besoin au niveau du développement des compétences pour la transformation et la valorisation de cette légumineuse. L’industrie des aliments fonctionnels et des nutraceutiques s’est beaucoup intéressée au soya étant donné son contenu riche en molécules potentiellement bioactives, telles que les protéines. Cependant, il faut réussir à isoler ou concentrer ces molécules bioactives pour les rendre efficaces. Les procédés membranaires sont des technologies offrant la possibilité de fractionner des solutions afin d’en concentrer des molécules cibles. Ces technologies membranaires peuvent se diviser en deux grands groupes : celles dont la force motrice principale est la pression; dont font partie l’ultrafiltration (UF) et la nanofiltration (NF), et celles dont la force motrice est le champ électrique; l’électrodialyse avec membrane d’ultrafiltration (EDUF). Cependant, l’application de ces procédés de séparation membranaires à des solutions protéiques s’est parfois révélée problématique dû à la tendance au colmatage des membranes. Cette étude avait donc pour objectifs 1) d’évaluer le potentiel à l’encrassement des membranes échangeuses d’ions par un hydrolysat de protéines de soya, 2) de comparer l’efficacité de séparation des couplages d’UF/NF et UF/EDUF en termes de transfert de masse et de taux de migration, 3) de caractériser les fractions obtenues en termes de masses moléculaires, de concentrations en protéines et peptides et de profils de poids moléculaires et d’acides aminés, et 4) d’évaluer le potentiel antioxydant et neuroprotecteur des fractions obtenues. L’étude des colmatages peptidiques de membranes ioniques a démontré que les interactions électrostatiques sont la principale cause de ce phénomène dont l’intensité varie selon le type de membrane (cationique ou anionique) et les conditions du milieu utilisées (acide ou basique). Des étapes simples de nettoyages des membranes à l’aide de solution salines de NaCl peuvent améliorer les performances de ces procédés à long terme et ainsi améliorer leur efficacité. Les 2 couplages à l’étude ont démontré des taux de transfert de masse semblables alors que le couplage avec nanofiltration s’est montré plus efficace au niveau du taux de migration en fonction du temps et de la surface de membrane utilisée. Les 2 couplages ont produit des fractions peptidiques très différentes tant au niveau des profils en acides aminés, des poids moléculaires et du contenu peptidique qu’au niveau du potentiel antioxydant. En effet, le couplage UF/NF a permis de produire des perméats très concentrés en petits poids moléculaires alors que le couplage UF/EDUF a produit des fractions possédant une gamme plus large de poids moléculaires, mais présentant une spécificité en fonction du pH de la solution. Le perméat de nanofiltration et les KCl 1 et 2 de l’ÉDUF ont démontrés des niveaux transfert de protéines totales semblables avec les procédés utilisés. Le procédé d’ÉDUF a permis la récupération de fractions ayant un contenu plus élevé en peptides polaires. Les fractions d’ÉDUF KCl 1 à pH 3 et 6 ont démontré un potentiel antioxydant élevé lors du test de l’ORAC. Ces mêmes fractions ainsi que le KCl 1 à pH 9 et le perméat de NF à pH 6 ont aussi démontré un effet intéressant sur le potentiel redox. Cependant, aucune fraction recueillie n’a démontré d’effet de protection contre les espèces réactives à l’oxygène sur les cellules neuronales mais se sont montrées non-toxiques pour ces cellules. / Soy is an important legume produced in Canada and its culture and production rate increased significantly in the recent years. Developing new competences to create by-products instead of exporting soya to other countries is of interest for the economy. The functional food and nutraceutical industry have great interests on soya due to its high bioactivity potential in regard of the protein content. Technologies using membranes offer the possibility of fractionating solutions to concentrate and isolate molecules of interest. These technologies can be divided in two main categories: Pressure-driven processes in which ultrafiltration (UF) and nanofiltration (NF) take part and electrically-driven processes in which electrodialysis with ultrafiltration (EDUF) membrane takes place. Working with protein or hydrolyzate solutions (soya in this case) can be problematic since these proteins or peptides have the tendency to foul the membranes. The aim of this study was 1) to evaluate the ion-exchange membranes potential to fouling by soy peptides 2) to compare pressure- and electrically-driven process in terms of mass flux and mass balance 3) to characterize the fractions in terms of molecular weight and amino acid profile, protein and peptide contents and 4) to evaluate their antioxidant potential and neuroprotection capacity. The study on ion-exchange membranes fouling by peptides showed that electrostatic interactions are the main cause of this phenomenon and its intensity depends on the type of membrane (cationic or anionic) used and the medium characteristics (acid or basic). Simple cleaning steps with NaCl solution could enhance performances of this process and improve its efficiency. Both processes showed a similar mass balance, however UF/NF process showed a higher mass transfer than UF/EDUF process when considering the time and membrane surface used to complete the run. UF/NF system produced a permeate with small molecular weights while UF/EDUF system produced fractions with a large range of molecular weights with a very specific molecular weight range depending on the pH value. Both processes produced similar fractions in terms of protein content. Specific fractions of EDUF were composed of a high level of polar amino acids. KCl 1 pH 3 and 6 from EDUF showed antioxidant capacities by the ORAC test. The same fractions as well as KCl 1 pH 9 and NF permeate pH 6 showed an interesting effect in the redox potential. Therefore none of these fractions showed protection against oxidative stress induced in cells.
2

Étude de la mobilité électrophorétique des oligomères de chitosane et leur fractionnement par électrodialyse avec membrane d'ultrafiltration (EDUF)

Aider, Mohammed 13 April 2018 (has links)
Les deux objectifs principaux de ce projet étaient d’étudier la mobilité électrophorétique d’oligomères de chitosane et d’appliquer les résultats pour les séparer dans un système d’électrodialyse avec membrane d’ultrafiltration (EDUF). Le premier sous-objectif a été d’étudier les mobilités électrophorétiques de standards de D-glucosamine et d’oligomères de chitosane (dimère, trimère, tétramère, pentamère et hexamère) en milieu dilué dans différentes conditions de pH, de sels et de forces ioniques ajoutées. Une gamme de pH allant de 3 à 9 a été étudiée. Deux sels; NaCl et KCl, ont été utilisés aux valeurs de forces ioniques de 0.01, 0.05 et 0.1 mole/L. Les mêmes mesures ont été réalisées dans l’eau déionisée sans ajout de sel, représentant le milieu sans force ionique ajoutée. La mobilité électrophorétique diminuait avec l’augmentation du pH et de la force ionique. Les plus hautes valeurs de mobilité ont été enregistrées dans l’eau. Le dimère a été le plus mobile. À partir du degré de polymérisation (DP) de 3 correspondant au trimère, aucune différence n’a été enregistrée entre les mobilités des oligomères. Le deuxième sous-objectif a été d’étudier la mobilité électrophorétique d’un mélange typique d’oligomères de chitosane composé de dimère, trimère et tétramère. L’effet de la concentration sur la mobilité électrophorétique du mélange a été étudiée. Des valeurs de pH variant de 2 à 12 dans l’eau et dans du NaCl aux forces ioniques ajoutées de 0.01, 0.05 et 0.1 M ont été étudiées. Les plus hautes mobilités électrophorétiques ont été enregistrées dans l’eau sans ajout de sel aux pH 2 et 3 avec une valeur moyenne de 2.009 ± 0.105 x 10-6 m2/V.s. Aux pH 4, 5 et 6, la mobilité électrophorétique a été stable avec une moyenne de 1.225 ± 0.051 x 10-6 m2/V.s. En augmentant le pH, la mobilité des oligomères diminuait en raison de la déprotonation de la fonction amine. Suite à ces études fondamentales, le troisième sous-objectif a été d’étudier l’effet du seuil de coupure des membranes d’ultrafiltration (500, 1000, 5000, 10000 et 20000 Da) lors de la séparation des oligomères de chitosane et correspondant à un produit industriel. Le seuil de coupure de la membrane avait un effet significatif sur le taux d’électromigration de chaque oligomère, ainsi que sur la possibilité de les séparer. Après 4h de traitement, le taux d’électromigration du dimère a été le plus élevé avec des valeurs allant de 5.71 ± 0.95% avec une membrane 1000 Da jusqu’à 14.45 ± 1.43% avec une membrane de 20000 Da. Suite au troisième sous-objectif, une membrane d’ultrafiltration de 10000 Da a été sélectionnée pour la suite du projet. Ce choix a été basé sur le fait que cette membrane a montré une rétention du tetramère pendant deux heures de traitement et a laissé passer tous les oligomères par la suite. Le quatrième sous-objectif a été d’étudier l’effet du pH sur le taux d’électromigration des oligomères et la possibilité de leur séparation avec la membrane de 10000 Da. Le pH a eu un effet significatif sur le taux d’électromigration et la possibilité de séparation des oligomères. Après 4h de traitement, le taux d’électromigration du dimère a atteint des valeurs de 11.50 ± 4.33, 10.61 ± 0.21, 8.30 ± 0.0.34 et 5.52 ± 0.38% aux pH 4, 5, 6 et 7, respectivement. Le trimère a migré en même temps que le dimère mais avec des taux d’électromigration inférieurs. Le tétramère a migré uniquement après 3 et 4 h à pH 4 et 5, respectivement et n’a pas migré aux pH 6 et 7. Aux pH 8 et 9, aucune électromigration n’a été observée. Finalement, le cinquième sous-objectif a été d’étudier l’effet du champ électrique (2.5, 5 et 10 V/cm, correspondant aux différences de potentiel de 5, 10 et 20 V, respectivement) appliqué au système d’électrodialyse avec membrane d’ultrafiltration et des vitesses de circulation des solutions (2.77, 8.33 et 13.88 cm/s correspondant à 100, 300 et 500 mL/min) sur le taux d’électromigration et la séparation des oligomères. Le champ électrique a eu un effet significatif à la fois sur le taux d’électromigration des oligomères de chitosane et sur la possibilité de les séparer. À 2.5 V/cm, il a été possible d’obtenir une solution composée uniquement du dimère et du trimère après 2 h de traitement. Le dimère ayant un taux d’électromigration de 10.20 ± 3.04% et le trimère de 8.52 ± 1.66%. Avec des champs électriques de 5 et 10 V/cm, aucune séparation possible n’a été observée. / The aim of this project was to study the electrophoretic mobility of chitosan oligomers and to apply the results to separate them in an electrodialysis with ultrafiltration membrane (EDUF) system. The first sub-objective was to study the electrophoretic mobilities of D-glucosamine and chitosan oligomers (dimer, trimer, tetramer, pentamer and hexamer) under various conditions of pH, salts and added ionic strengths. pH values from 3 to 9 and ionic strength of 0.01, 0.05 and 0.1 M of NaCl and KCl were studied. The same measurements were carried out in deionised water as a medium without any added ionic strength. Chitosan oligomer electrophoretic mobility decreased by increasing pH and ionic strength. The highest values were recorded in water followed by those in NaCl or KCl with an ionic strength of 0.01 M. The lowest values were recorded at an ionic strength of 0.05 and 0.1 M. The dimer was the most mobile oligomer followed by the monomer. No difference was observed between the mobilities of the oligomers with degree of polymerisation (DP) of 3 and more. The second sub-objective consisted to study the electrophoretic mobility of chitosan oligomer mixture composed by dimers, trimers and tetramers at different concentrations. pH values from 2 up to 12, added ionic strength of 0.01, 0.05 and 0.1 M of NaCl were studied. Electrophoretic mobility was also carried out in water as medium with zero added ionic strength. At a concentration of 3%, the chitosan oligomer mixture showed the highest electrophoretic mobility at pH 2 and 3 with an average value of 2.009 ± 0.105 x 10-6 m2/V.s. At pH 4, 5 and 6, the electrophoretic mobility was stable with an average value of 1.225 ± 0.051 x 10-6 m2/V.s. By increasing the pH, electrophoretic mobility decreased because of the deprotonation phenomenon of the amine group. By decreasing the concentration, the electrophoretic mobility decreased. Following these fundamental studies, the separation by an electrodialysis with ultrafiltration membrane (EDUF) system of a chitosan oligomer mixture was studied. The third sub-objective was to study the effect of ultrafiltration membrane molecular weight cut-offs on chitosan oligomers electromigration rates and kinetics. Five cellulose ester ultrafiltration membranes of 500, 1000, 5000, 10000 and 20000 Da MWCO were used. The membrane molecular weight cut-off had a significant effect on the electromigration rate of each chitosan oligomer, as well as on the possibility of their separation. The dimer showed the highest electromigration rates with average values which varied from 5.71 ± 0.95% up to 14.45 ± 1.43% with 1000 and 20000 Da MWCO UF-membranes, respectively. The effect of the processing time and the oligomers chain length was interpreted. Following this objective, an UF-membrane of 10000 Da MWCO was selected for the future objectives. The fourth sub-objective was to study the effect of the pH on the electromigration rate of the studied oligomers and their kinetics. pH 4 and solution flow velocity of 0.5 cm/s (300 mL/min) were used. pH had a significant effect on the electromigration rate of the oligomers and the possibility of their separation. After 4h of treatment, the dimer showed the highest electromigration rates with mean values of 11.50 ± 4.33, 10.61 ± 0.21, 8.30 ± 0.34 and 5.52 ± 0.38% at pH values of 4, 5, 6 and 7, respectively. Trimer electromigration rates were lower than that of the dimer. Between pH 4 and 7, it migrated with mean values of 8.52 ± 1.45 and 0.83 ± 0.43%, respectively. The effect of the processing time, electrophoretic mobility and oligomers chain length were interpreted. It was possible to obtain a fraction composed by the dimer and trimer at pH 4 and 5 until 2 and 3h, respectively. At pH 6, the tetramer did not migrate during the 4h of treatment. At pH 7, it was possible to obtain dimer pure fraction until 2h of treatment. No electromigration was observed at pH 8 and 9. In the fifth sub-objective, the effect of the applied external electric field (2.5, 5 and 10 V/cm, corresponding to an applied volatage of 5, 10 and 20 V, respectively) to the electrodialysis with ultrafiltration membrane (EDUF) system and solution flow velocity (2.77, 8.33 and 13.88 cm/s corresponding to flow rates of 100, 300 and 500 mL/min, respectively) on the electromigration rate and kinetics of the oligomers were studied. The solution flow velocity did not show any effect on the electromigration rate of the oligomers whereas the applied electric field strength had a significant effect on both electromigration rate and separation of the studied oligomers. At 2.5 V/cm, it was possible to obtain a solution composed only by the dimer and trimer until 2 h of treatment. Using and electric field strength of 2.5 V/cm, the dimer migrated with an average rate of 10.20 ± 3.04% and the trimer with an average value of 8.52 ± 1.66%. By increasing the electric field strength up to 5 and 10 V/cm (voltage of 10 and 20 V, respectively), there was no separation of the studied chitosan oligomers.
3

Fractionnement d'un hydrolysat peptidique de co-produits de crabe des neiges par électrodialyse avec membranes d'ultrafiltration : impact des paramètres liés au procédé sur la migration et la sélectivité peptidique

Doyen, Alain 17 April 2018 (has links)
Un hydrolysat de co-produits de crabe des neiges a été fractionné par le procédé d'électrodialyse avec membranes d'ultrafiltration afin de séparer spécifiquement des fractions peptidiques bioactives. La configuration électrodialytique utilisée permettait une séparation simultanée des peptides anioniques et cationiques. Différents paramètres liés au procédé d'EDUF ont été étudiés afin d'obtenir les conditions optimales de séparation. Une fraction anticancer cationique a été obtenue lors d'un fractionnement réalisé à pH 6 avec des membranes d'ultrafiltration de 20 kDa sous une force de champ électrique de 5 V/cm. Une fraction antibactérienne anionique a également été isolée après un fractionnement réalisé à pH 9 avec des membranes d'ultrafiltration de 50 kDa sous une force de champ électrique de 14 V/cm. L'efficacité de l'EDUF, qui est très dépendante des paramètres de procédés appliqués, a donc été démontrée pour le fractionnement et la récupération de fractions peptidiques bioactives.
4

Étude du fractionnement d'un hydrolysat trypsique de B-lactoglobuline par électrodyalise avec membrane d'ultrafiltration

Poulin, Jean-François 12 April 2018 (has links)
Le but de ce projet était d'étudier l'impact du débit de la solution d'alimentation, de la surface membranaire effective et de la force du champ électrique sur un procédé d'électrodialyse avec membrane d'ultrafiltration pour le fractionnement de peptides issus d'un hydrolysat trypsique de P-lactoglobuline. L'évolution des paramètres électrodialytiques, soit le pH des solutions d'alimentation et de perméation de même que leur conductivité électrique a été suivie. La migration peptidique dans le temps a été quantifiée par spectrophotométrie et qualifiée par RP-HPLC et par spectrométrie de masse. Les résultats ont montré que le débit des solutions n'influençait pas la productivité et que très peu les paramètres électrodialytiques, mais qu'il pouvait moduler la sélectivité du procédé. Il a aussi été montré que l'augmentation de la surface membranaire permet d'augmenter de façon linéaire la productivité du procédé, en ne modifiant pas sa sélectivité. La hausse de la valeur du champ électrique s'est aussi avérée importante pour améliorer la migration peptidique. Le pH et la conductivité des solutions ont aussi été fortement influencés par ces paramètres d'opération. Une bonne combinaison de surface, débit et champ électrique permet d'améliorer la rapidité et la productivité de l’électrodialyse avec membrane d'ultrafiltration pour la séparation sélective de peptides d'hydrolysats protéiques. / The aim of this study was to evaluate the influence of three process parameters (flow rate of the feed solution, effective membrane area, electrical field strength) on electrodialysis with ultrafiltration membrane for the fractionation of peptides from a tryptic P-lactoglobulin hydrolysate. To achieve this, the evolution of electrodialytic parameters such as the pH. of the feed and permeation solutions as well as their electrical conductivity was followed. Peptide migration over time was evaluated by spectrophotometry and the molecular profiles of both solutions were determined by RP-HPLC and mass spectrometry. Results of the first part of the study have shown that the flow rate had no impact on the productivity, a slight influence on the electrodialytic parameters but could modify the selectivity of the process. On the other hand, the increase of the membrane effective area resulted in a linear increase of the peptide concentration in the permeation solution without influencing the selectivity. The raise of the electrical field strength also resulted in an important increase of the productivity of the process. Modification of those parameters also modified the behaviour of pH and conductivity over time. A combination of the optimal flow rate, membrane area and electrical field strength allows to improve the productivity and the speed of electrodialysis with ultrafiltration membrane for the selective fractionation of peptides derived from protein hydrolysates.

Page generated in 0.1278 seconds