Spelling suggestions: "subject:"électrophysiologie (match–clamp)"" "subject:"électrophysiologie (batch–clamp)""
1 |
Conception et application de nouveaux outils photochimiques pour l’étude des récepteurs canaux P2X / Conception and application of new photochemical tools to study P2X receptorsPeverini, Laurie 02 November 2017 (has links)
Les récepteurs P2X (P2XR), activés par l’ATP, sont impliqués dans des rôles physiopathologiques. Leur fonctionnement est associé à différents états conformationnels. Le projet de thèse a mené à associer la synthèse organique et l’application de molécules photo-activables avec des techniques d’électrophysiologie patch-clamp, pour décortiquer les mouvements moléculaires de ces récepteurs et effectuer des relations structure-fonction, via trois stratégies : - La synthèse et application d’agrafes photo-isomérisables qui permet le photo-contrôle des P2XR et l’étude de mouvements - La synthèse et caractérisation d’un acide aminé (aa) photo-clivable pour étudier les implications de zones sur la fonction des P2XR via une photolyse - L’incorporation d’un aa non naturel dans les P2XR pour étudier des interactions et mouvements via un « photo-pontage ». Nous avons élucidé les mécanismes moléculaires responsables de la perméabilité des P2XR, récusé l’existence de l'état dilaté et identifié un cation organique physiologique pouvant les traverser. Nous avons aussi conçu un acide aminé photo-clivable pouvant mener à des études structure-fonction des P2XR. / P2X receptors are cationic ligand-gated ion channels, activated by extracellular ATP, involved in many physio-pathological roles. Their function is associated with different allosteric states. During this PhD, we have designed three new strategies, spanning photochemical organic synthesis and patch-clamp electrophysiology to elucidate the molecular mechanisms involved in these conformational states and to collect data in order to study structure-function relationships. - Synthesis and application of molecular tweezers, which allows the photo-control of P2X Rand the study of molecular motions - Synthesis and characterization of a photo-cleavable amino acid with the aim of incorporating it into P2XR and doing structure-function relationships - Incorporation of an unnatural amino acid for photo-crosslinking studies. We have been able to probe the molecular mechanism involved in large organic cations permeation of P2XR, to bring into question the dilated state and to identify a physiological cation that can flow through P2XR. We have also designed a photo-cleavable amino acid which could serve in the study of structure-function relationships.
|
2 |
Couplage fonctionnel entre un récepteur et un canal ionique: étude du canal KATP et application pour la création de biocapteursDupuis, Julien 08 September 2008 (has links) (PDF)
Les canaux potassiques sensibles à l'ATP (KATP) jouent un rôle primordial dans la sécrétion pancréatique d'insuline et participent au contrôle du tonus vasculaire ainsi que de l'excitabilité des cellules musculaires cardiaques et neuronales. Constitués de l'assemblage unique d'un récepteur membranaire de la famille des transporteurs ABC, le récepteur des sulphonylurées SUR, et d'un canal potassique rectifiant entrant, Kir6.2, ces canaux couplent le métabolisme cellulaire au potentiel membranaire et constituent en ce sens un modèle naturel de biocapteur.<br />Le caractère unique de cet assemblage tient au fait que SUR est capable de réguler l'activité de Kir6.2 suite à la fixation de ligands: nucléotides, activateurs ou inhibiteurs pharmacologiques. Nous nous sommes intéressés aux déterminants moléculaires intervenant dans le couplage fonctionnel de SUR au canal Kir6.2. Utilisant une stratégie chimérique, nous avons identifié une région C-terminale de l'isoforme SUR2A essentielle aux mécanismes d'activation du canal, assurant le lien entre la fixation de ligands à SUR et l'ouverture de Kir6.2.<br />Nous avons également utilisé notre connaissance du modèle du canal KATP pour développer un nouveau type de biocapteur électrique, les Ion Channel Coupled Receptors (ICCR), fondé sur le couplage fonctionnel artificiel entre Kir6.2 et des récepteurs couplés aux protéines G (GPCR). Par ingénierie protéique, nous avons créé deux modèles d'ICCR impliquant respectivement les récepteurs muscarinique M2 et dopaminergique D2: la fixation d'agonistes ou antagonistes spécifiques sur ces récepteurs entraîne une activation ou une inhibition du canal mesurables électriquement en temps réel, jetant les bases prometteuses d'une nouvelle génération de biocapteurs acellulaires.
|
3 |
Développement de la technologie des récepteurs couplés à un canal ionique pour des études structure-fonction des récepteurs couplés aux protéines G et du canal Kir6.2Niescierowicz, Katarzyna 21 October 2013 (has links) (PDF)
Les Récepteurs Couplés à un Canal Ionique (ICCRs) sont des canaux ioniques artificielscréés par fusion d'un Récepteur Couplé aux Protéines G (RCPG) au canal ionique Kir6.2. Dansce concept, le canal agit comme un rapporteur direct des changements conformationnels desRCPGs permettant de détecter par simple mesure de courant, la fixation d'agonistes etd'antagonistes proportionnellement à leur concentration.Le signal induit étant directement corrélé à l'activité du récepteur, indépendamment desvoies de signalisation des protéines G, nous avons exploité cet avantage pour étendre le champd'applications des ICCRs au cours de cette thèse. Nous avons développé quatre applications quisont: 1) la caractérisation fonctionnelle des RCPG optimisés pour la cristallisation par insertionde domaine du lysozyme du phage T4 dans la boucle ICL3; 2) la détection de la dépendance desRCPGs au cholestérol; 3) la détection de ligands dits "biaisés" pour faciliter leur criblage; et 4) lacartographie fonctionnelle des portes du canal Kir6.2 régulées par des protéines membranairesinteragissant par le domaine N-terminal.
|
4 |
Développement de la technologie des récepteurs couplés à un canal ionique pour des études structure-fonction des récepteurs couplés aux protéines G et du canal Kir6.2 / Development of the Ion Channel-Coupled Receptor technology in structure-function studies of G protein-coupled receptors and Kir6.2 channel.Niescierowicz, Katarzyna 21 October 2013 (has links)
Les Récepteurs Couplés à un Canal Ionique (ICCRs) sont des canaux ioniques artificielscréés par fusion d'un Récepteur Couplé aux Protéines G (RCPG) au canal ionique Kir6.2. Dansce concept, le canal agit comme un rapporteur direct des changements conformationnels desRCPGs permettant de détecter par simple mesure de courant, la fixation d'agonistes etd'antagonistes proportionnellement à leur concentration.Le signal induit étant directement corrélé à l'activité du récepteur, indépendamment desvoies de signalisation des protéines G, nous avons exploité cet avantage pour étendre le champd'applications des ICCRs au cours de cette thèse. Nous avons développé quatre applications quisont: 1) la caractérisation fonctionnelle des RCPG optimisés pour la cristallisation par insertionde domaine du lysozyme du phage T4 dans la boucle ICL3; 2) la détection de la dépendance desRCPGs au cholestérol; 3) la détection de ligands dits "biaisés" pour faciliter leur criblage; et 4) lacartographie fonctionnelle des portes du canal Kir6.2 régulées par des protéines membranairesinteragissant par le domaine N-terminal. / Ion Channel-Coupled Receptors (ICCRs) are artificial ion channels created by the fusion of a Gprotein-coupled receptor to a Kir6.2 channel. In this concept, the channel acts a direct reporter ofthe conformational changes of the GPCRs, allowing the detection by simple current recordingsof agonists and antagonists binding in concentration-dependent manner.The signal being directly correlated to the receptor activity, independently of G protein signallingpathways, we exploited this advantage to extend the field of applications of ICCRs during thisthesis. We developed 4 applications: 1) the functional characterization of the optimized GPCRsfor crystallization by insertion of the T4 phage lysozyme domain in the ICL3 loop; 2) thedetection of a cholesterol-dependence of the GPCRs; 3) the detection of the so-called "biasedligands" to simplify their screening; and 4) the functional mapping of the Kir6.2 channel gatesunder control of membrane proteins interaction with the N-terminus domain.
|
Page generated in 0.0868 seconds