• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of storage systems for MTDC

Shadabi, Hamed 21 February 2022 (has links)
Les sources d'électricité renouvelables sont de plus en plus intégrées dans le système électrique, posant des problèmes en termes d'inertie, de fiabilité du réseau et de qualité de l'énergie. La majeure partie de ces sources d'énergie, telles que les éoliennes, sont situées loin des systèmes électriques. Le système de transmission de courant continu haute tension (VSC-HVDC) basé sur un convertisseur de source de tension est idéal pour connecter les parcs éoliens offshore au réseau électrique CA onshore. Depuis plus de 50 ans, les systèmes à courant continu haute tension (HVDC) sont utilisés dans les systèmes de transmission d'énergie. Ce système de transport présente plusieurs avantages, notamment une distribution d'énergie active et réactive découplée, la possibilité d'inverser les flux d'énergie sans ajuster la polarité de la tension et la capacité de fonctionner dans des réseaux électriques vulnérables et indépendants. Outre les avantages mentionnés ci-dessus, les systèmes HVDC sont considérés comme une alternative viable aux systèmes de transmission conventionnels en raison de leur potentiel à transmettre de vastes volumes d'énergie sur de longues distances. En raison de la faible perte de puissance du câble, les technologies HVDC sont idéales pour transporter l'énergie électrique sur de longues distances. Ses principales utilisations comprennent l'interconnexion de réseau non synchrone, le transfert d'énergie électrique à longue distance et la transmission de câbles sous-marins et souterrains. La mise en œuvre d'un réseau hybride AC-HVDC est une étape importante dans le développement des techniques HVDC, car elle conduit à un changement dans la structure du système DC de connexions DC autonomes point à point vers un HVDC multi-terminal (MTDC) système. L'un des types les plus courants de topologies de réseau à courant continu est le VSC-HVDC multi-terminal, qui a plus de deux VSC reliés aux réseaux à courant continu. Seule la technologie VSC, et non la technologie LCC, permet ces types de réseaux HVDC maillés. Cela est dû à la capacité des IGBT à transférer le courant dans les deux sens tout en conservant la même polarité de tension. Le système MTDC est une solution appropriée pour les interconnexions d'énergie propre, et il contribuera à augmenter la stabilité, la flexibilité et les performances du système électrique. Les convertisseurs électroniques de puissance sont utilisés dans les réseaux MTDC pour communiquer avec les systèmes CA et fournir des services de contrôle. Les convertisseurs électroniques de puissance (AC / DC ou DC / DC) joueront sans aucun doute un rôle important pour garantir une stabilité, des performances et une rentabilité élevées du réseau. L'inertie globale du système diminue à mesure que les interconnexions de convertisseurs électroniques de puissance deviennent plus répandues dans le système d'alimentation. Les systèmes de génération d'interconnexion basés sur VSC, tels que les éoliennes, n'ont pas de contribution inertielle par défaut, contrairement aux générateurs synchrones. Une éolienne, par contre, peut être conçue pour fournir une assistance inertielle en ajustant la puissance de sortie pour compenser les conditions du réseau. Plusieurs solutions au manque d'inertie de ces structures à interface électronique ont été proposées. Il est indéniable que les systèmes de stockage d'énergie (SSE) basés sur des convertisseurs de puissance ont la capacité d'améliorer le comportement transitoire du système électrique. La modulation d'une fréquence d'appareil donnée est l'un des objectifs fondamentaux des ESS. L'énergie cinétique contenue dans la masse mobile des éoliennes, le stockage d'énergie par batterie, le stockage d'énergie par air comprimé, le stockage d'énergie par volant, le stockage d'énergie par supercondensateur et le stockage d'énergie magnétique supraconductrice font partie des technologies actuellement proposées. En proposant la technologie MMC pour VSC, l'utilisation de l'énergie stockée dans les stations de conversion devient plus possible car une capacité de stockage d'énergie plus capacitive est disponible dans ce type de convertisseur par rapport à un VSC traditionnel à deux niveaux. L'étude actuelle suggère que les capacités du système HVDC soient utilisées pour améliorer et sécuriser le réseau à courant alternatif du système. Les systèmes de stockage d'énergie (ESS) sont utilisés dans les réseaux MTDC pour surveiller l'électricité, la fréquence, la tension du réseau en courant continu et le partage d'énergie dans diverses conditions, y compris les pannes et les pannes de convertisseur. En résumé, les systèmes électriques sont confrontés à de nouveaux problèmes en raison de la forte pénétration des sources d'énergie renouvelables qui sont connectées au réseau par un convertisseur électronique de puissance. En conséquence, l'augmentation de la connexion de base du convertisseur affecte la fréquence et la stabilité de la tension du système d'alimentation. Les normes de liaison au réseau ont plusieurs objectifs de base, dont l'un est de maintenir la fiabilité globale du système électrique. L'étude actuelle suggère d'utiliser des systèmes de stockage d'énergie (SSE) dans les systèmes HVDC pour augmenter la stabilité du système électrique. Bien que l'utilisation de systèmes de stockage d'énergie (tels que des batteries, des volants d'inertie, des super-condensateurs ou des systèmes d'énergie magnétique supraconducteurs) ait déjà été réalisée pour augmenter l'inrtie du réseau, la combinaison de l'utilisation de systèmes de stockage d'énergie (tels que des batteries, des volants d'inertie, des super-condensateurs, ou systèmes d'énergie magnétique supraconducteurs est quelque peu nouvelle et fascinante dans les réseaux MTDC. Ce concept sera testé sur une variété de systèmes HVDC (point à point, MTDC) pour voir comment l'ESS affecte les différentes caractéristiques du réseau lorsqu'il est connecté via des convertisseurs. / Renewable electricity sources are increasingly being integrated into the power system, posing problems in terms of inertia, grid reliability, and power quality. The bulk of these energy sources, such as wind turbines, are situated far from power systems. The voltage-source converter-based high voltage direct current (VSC-HVDC) transmission system is a good fit for connecting offshore wind farms to the onshore AC power grid. For more than 50 years, high-voltage direct current (HVDC) systems have been used in power transmission systems. This transmission system has several benefits, including decoupled active and reactive power distribution, the ability to reverse power flows without adjusting voltage polarity, and the ability to run in vulnerable and independent power networks. Aside from the benefits mentioned above, HVDC systems are seen as a viable alternative to conventional transmission systems due to their potential to transmit vast volumes of power over long distances. Because of the low cable power loss, HVDC technologies are ideal for transporting electrical power over long distances. Its key uses include nonsynchronous network interconnection, long-distance electrical energy transfer, and underwater and underground cable transmission. Implementing a hybrid AC-HVDC grid is a significant step forward in the development of HVDC techniques, as it leads to a shift in the dc system's structure from point-to-point stand-alone dc connections to a multi-terminal HVDC (MTDC) system. One of the most common types of dc grid topologies is multi-terminal VSC-HVDC, which has more than two VSC linked to the dc grids. Only VSC technology, not LCC technology, allows for these types of meshed HVDC grids. This is due to IGBTs' ability to transfer current in both directions while maintaining the same voltage polarity. The MTDC system is an appropriate solution for clean energy interconnections, and it will help to increase power system stability, flexibility, and equipment performance. Power electronic converters are used in MTDC grids to communicate with AC systems and provide control services. Power electronic converters (AC/DC or DC/DC) will undoubtedly play an important role in ensuring high grid stability, performance, and cost-effectiveness. The overall system inertia is decreasing as power electronic converter interconnections become more prevalent in the power system. VSC-based interconnection generation systems, such as wind turbines, do not have an inertial contribution by default, unlike synchronous generators. By adjusting the power output to adapt to grid circumstances, a wind turbine, on the other hand, may provide inertial support. The problem of inertia reduction in the AC/DC system has been tackled using a variety of methods. To provide frequency support for connected AC grids, these solutions include utilizing the control capability of MTDC systems and Energy Storage Systems (ESSs). It is an undeniable fact that power converter-based Energy Storage Systems (ESSs) have the ability to improve power system transient behavior. The modulation of a given device frequency is one of the basic goals of ESSs. Kinetic energy contained in the moving mass of wind turbines, battery energy storage, compressed air energy storage, flywheel energy storage, supercapacitor energy storage, and superconducting magnetic energy storage are among the technologies currently proposed. By proposing the MMC technology for VSC, using the energy stored in the converter stations is becoming more possible because more capacitive energy storage capability is available in this kind of converter in comparison with a traditional two-level VSC. The current research implies that the HVDC system's capabilities might be used to improve and safeguard the interconnected ac network. Furthermore, Energy storage systems (ESS) are used in MTDC grids to monitor electricity, frequency, dc network voltage, and power-sharing under a variety of conditions, including faults and outages. In a summary, power systems are facing new problems as a result of the high penetration of renewable energy sources that are connected to the grid by a power electronic converter. As a result, the increasing converter base connection affects the power system's frequency and voltage stability. Grid link standards have several basic goals, one of which is to maintain the overall reliability of the power system. To improve power system stability, the present study proposes utilizing the control capacity of MTDC systems and Energy Storage Systems (ESSs) in MTDC systems. The proposed approach enables the VSC converters to provide short-term frequency support for the AC side and improve the DC grid stability. While using energy storage systems (such as batteries, flywheels, super-capacitors, or superconductor magnetic energy systems) to increase grid inertia has been achieved before, the combination of using energy storage systems (such as batteries, flywheels, super-capacitors, or superconductor magnetic energy systems) in MTDC networks is somewhat new and fascinating. This concept will be tested on a variety of HVDC systems (point to point, MTDC) to see how ESS affects the network's various characteristics when connected through converters.
2

Étude et modélisation des convertisseurs de puissance associés aux systèmes de stockage d'énergie par batterie

Konde Lombo, Felicien 17 May 2023 (has links)
Titre de l'écran-titre (visionné le 8 mai 2023) / Ce mémoire présente une analyse technico-économique des convertisseurs de puissance associés aux systèmes de stockage d'énergie par batterie. Trois convertisseurs de puissance ont été modélisés en prenant en compte notamment la résistance interne de la batterie et les fluctuations de la tension aux bornes du système de stockage. Il s'agit plus précisément d'un convertisseur DC/DC, d'un convertisseur DC/AC triphasé à deux niveaux, et d'un convertisseur triphasé DC/AC multi niveau de la structure NPC. La sélection de ces trois topologies de convertisseurs d'électronique de puissance n'est pas aléatoire et est soumise à certains critères de sélection. Ce choix est justifié tout au long du manuscrit. Les équations de dimensionnement, de calcul des pertes par conduction et par commutation, du rendement ainsi que du taux de distorsion harmonique de ces convertisseurs sont fournies. Les performances en termes de rendement, de pertes et de taux de distorsion harmonique de ces convertisseurs ont été déterminées en prenant en compte le rapport cyclique, la résistance interne du système de stockage, les fluctuations de la tension aux bornes du système de stockage et le type de charge alimentée par le système de stockage. Les résultats de la simulation de ces convertisseurs sur le logiciel Matlab/Simulink sont présentés pour valider la partie théorique. Au-delà des convertisseurs de puissance, ce travail présente également une approche holistique des systèmes de stockage d'énergie par batterie ainsi que de leurs composants. Par ailleurs, deux modèles d'équilibrage de cellules ont été développés sur la base de modèles disponibles dans la littérature. / This work presents a techno-economic analysis of power converters associated with battery energy storage systems. Three power converters are modeled, taking into account factors such as the internal resistance of the battery and voltage fluctuations at the storage system terminals. Specifically, these converters include a DC-DC converter, a two-level three-phase DC/AC converter, and a three-level three-phase NPC DC/AC converter. The selection of these three power electronic converter topologies for modelization is not random but is subject to certain selection criteria, which are justified throughout the manuscript. Equations for sizing, calculating conduction and switching losses, efficiency, and total harmonic distortion for these converters are provided. The performance of these converters in terms of efficiency, losses, and total harmonic distortion is determined taking into account duty cycle, internal resistance of the storage system, voltage fluctuations at the storage system terminals, and the type of load supplied by the storage system. Simulation results for these converters using Matlab/Simulink software are presented to validate the theoretical part. Beyond power converters, this work also presents a holistic approach to battery energy storage systems and their components. Additionally, two cell balancing models are developed based on models available in the literature.
3

Contributions à l'amélioration de la performance statique des réseaux T & D intégrés en présence des REDs

Mohseni Bonab, Seyed Masoud 27 December 2020 (has links)
Avec la croissance des nouvelles technologies émergentes dans les réseaux de distribution, tels que les éoliennes, les panneaux solaires, les véhicules électriques et les sources de génération distribuées, la nécessité d'étudier simultanément les réseaux de transmission et de distribution (T&D) et leurs interactions bilatérales ne peut plus être négligée. Une forte pénétration des sources d'énergie renouvelable, naturellement stochastiques, peut inverser le flux d'énergie, ce qui ne rentre pas dans le paradigme d’un écoulement de puissance à flux descendant qui caractérise les systèmes d'alimentation conventionnels. Par conséquent, les méthodes d'étude de réseaux telles que le fux de puissance optimal (Optimal Power Flow), l'engagement des groupes de production (unit commitment) et l'analyse de la stabilité doivent être revisitées. Cette thèse propose l'application de systèmes de stockage d'énergie sur batterie (BESS) dans un cadre intégré de T&D minimisant les impacts négatifs des énergies renouvelables insérées dans le réseau de distribution ou chez le client. Les BESS peuvent être interprétés comme des équipements flexibles supplémentaires, contrôlés à distance et/ou localement, qui absorbent ou libèrent des puissances actives et réactives et améliorent l'efficacité globale du système T&D au complet du point de vue de la stabilité et de la performance dynamique. Selon la pratique courante, les études des systèmes T&D intégrés peuvent être classées en sous-groupes d’études dynamiques vs stationnaires ou en sous-groupes d’études de cooptimisation vs co-simulation. Suivant la même approche, l’analyse à l’état d’équilibre est d’abord lancée par un nouvel outil d’allocation optimisée stochastique de BESS (VSCSOBA) à contrainte de stabilité de tension. L'outil d'optimisation développé basé sur GAMS à deux niveaux prend en compte les BESS et des modèles détaillés de ressources énergétiques distribuées stochastiques tout en minimisant principalement les pertes de puissance active, mais les écarts de tension, les coûts de délestage, l'augmentation de la capacité de charge (chargeabilité ou « loadbility ») ainsi que la réduction de la vulnérabilité sont aussi des fonctions objectives qui ont été considérées. L’applicabilité de l’outil proposé a été confirmée sur des cas d’utilisation basés sur des réseaux T&D benchmark de l’IEEE comportant des centaines de variables et contraintes. Dans la partie suivante, l'architecture du framework de co-simulation, ainsi que les différents acteurs clés qui y participent seront examinés. Les objectifs de cette partie sont les suivants : développer, simuler et résoudre des équations algébriques de chaque niveau indépendamment, à l'aide de simulateurs bien connus, spécifiques à un domaine (c’est-à-dire, transport vs distribution), tout en assurant une interface externe pour l'échange de données. L'outil d'interface devrait établir une connexion de partage de données robuste, fiable et bilatérale entre deux niveaux de système. Les idées et les méthodologies proposées seront discutées. Pour completer cette étude, La commutation optimale de réseaux de transport (Optimal Transmission Switching) en tant que nouvelle méthode de réduction des coûts d'exploitation est considérée d'un point de vue de la sécurité, en assument ou non la présence des BESS. De toute évidence, l'OTS est un moyen efficace (tout comme la référence de tension ou le contrôle des références de puissances P-Q) qui s’avère nécessaire dans le cadre T&D intégré, tel que nous le démontrons à travers divers cas d'utilisation. Pour ce faire, afin de préserver la sécurité des systèmes de transport d'électricité contre les attaques ou les catastrophes naturelles telles que les ouragans et les pannes, un problème OTS stochastique orienté vulnérabilité (VO-SOTS) est également introduit dans cette thèse tout en considérant l'incertitude des charges via une approche par échantillonage de scénarios respectant la distribution statistique des incertitudes. / With the growing trend of emerging new technologies in distribution networks, such as wind turbines, solar panels, electric vehicles, and distributed generations, the need for simultaneously studying Transmission & Distribution (T&D) networks and their bilateral interactions cannot be overlooked anymore. High penetration of naturally stochastic renewable energy sources may reverse the energy flow which does not fit in the top-down energy transfer paradigm of conventional power systems. Consequently, network study methods such as optimal power flow, unit commitment, and static stability analysis need to be revised. This thesis proposes application of battery energy storage systems (BESS) within integrated T&D framework minimizing the adverse impacts of renewable energy resources. The BESSs can be interpreted as additional flexible equipment, remotely and/or locally controlled, which absorb or release both active and reactive powers and improve the overall efficiency of the complete T&D system from both steady-state and dynamic viewpoints. As a common practice, the integrated T&D framework studies are categorized into either dynamic and steady-state subcases or co-optimization framework and co-simulation framework. Following the same approach, the steady-state analysis is first initiated by a novel voltage stability constrained stochastic optimal BESS allocation (VSC-SOBA) tool. The developed bi-level GAMS-based optimization tool takes into account BESSs and detailed models of stochastic distributed energy resources while minimizing active power losses, voltage deviation, load shedding costs, increasing loadability, and vulnerability mitigation are objective functions. The applicability of proposed tool has been confirmed over large IEEE recognized T&D benchmarks with hundreds of variables and constraints. In the next part, the architecture of co-simulation framework and different key players will be investigated. The objectives of this part are set as: developing, simulating, and solving differential and algebraic equations of each level independently, using existing well-known domain-specific simulators, while externally-interfaced for exchanging data. The interface tool should stablish a robust, reliable, and bilateral data sharing connection between two levels of system. The ideas and proposed methodologies will be discussed. To complete this study, optimal transmission switching (OTS) as a new method for reduction of operation costs is next considered from a security point of view. It is shown clearly that OTS is an effective mean (just like voltage reference or P-Q reference control), which is necessary in the integrated T&D framework to make it useful in dealing with various emerging use cases. To do so without impeding the security of power transmission systems against attacks or natural disasters such as hurricane and outages, a vulnerability oriented stochastic OTS (VO-SOTS) problem is also introduced in this thesis, while considering the loads uncertainty via a scenario-based approach.
4

Conception d'un système de stockage inertiel d'énergie à moyen terme : développement d'outils numériques et validation expérimentale

Filion, Guillaume 23 April 2018 (has links)
Les moteurs à combustion interne utilisés pour propulser les véhicules routiers produisent des gaz à effet de serre, l’une des causes probables des changements climatiques actuellement observés partout sur la planète. L’utilisation de véhicules électriques représente une alternative intéressante à cette problématique. Grâce aux nouvelles générations de piles, il est désormais possible de recharger les véhicules électriques rapidement, ce qui peut favoriser leur adoption. Afin de réduire l’impact de cette recharge rapide sur le réseau électrique, une solution est d’emmagasiner de l’énergie lors de périodes creuses de consommation énergétique pour recharger les véhicules électrique rapidement lors des périodes de forte demande. La présente thèse fait état de travaux visant le développement d’un système de stockage inertiel d’énergie à moyen terme destiné à cette problématique des véhicules électriques. La conception de ce type de système nécessite l’étude de plusieurs domaines du génie mécanique et du génie électrique. Les recherches présentées dans cette thèse s’intéressent principalement à la dynamique des rotors, à la mécanique des matériaux et aux roulements magnétiques passifs. Plusieurs outils théoriques ont été développés pour prévoir le comportement dynamique du système et pour prédire les contraintes internes induites par la rotation. Plusieurs parmi ceux-ci ont été validés théoriquement grâce à des cas présentés dans la littérature, ainsi qu’expérimentalement à l’aide d’un système de stockage expérimental original. Ce dernier a aussi été utilisé pour valider plusieurs concepts théoriques de la dynamique des rotors qui sont peu discutés dans la littérature, c’est-à-dire l’influence des imperfections des roulements magnétiques passifs radiaux et du moteur à aimants permanents sur le comportement du système. Pour ce faire, des roulements magnétiques passifs radiaux réduisant les pertes mécaniques dans le système ont été conçus, fabriqués et caractérisés en utilisant une méthodologie novatrice. Il a été démontré expérimentalement qu’il est possible d’utiliser le principal défaut de ce type de roulements, c’est-à-dire leur instabilité, afin de réduire les pertes induites par une butée axiale à bille. Finalement, les premières étapes du développement d’un composite lourd utilisant l’acier comme renfort sont présentées. Mots-clés : Dynamique de rotor; Roulement magnétique passif; composite lourd; renfort d’acier; validation expérimentale; Moteur synchrone à aimants permanents; Stockage inertiel. / Internal combustion engines used to propel road vehicles produce greenhouse gases, one of the probable causes of global warming, a phenomenon currently observed everywhere on the planet. The use of electric vehicles is an interesting alternative to reduce the production of those gas emissions. New battery technologies enable rapid electric vehicles recharge, a feature which might increase their adoption. In order to reduce the impact of this rapid charging on the grid, an attractive solution is to store energy during periods of low consumption and then use it rapidly to recharge the onboard batteries during high demand periods. This thesis reports the work aimed at the development of a flywheel energy storage system that would solve this problem for electric vehicles. The design of such a system requires the study of multiple disciplines related to both mechanical and electrical engineering. The areas of research presented in this thesis are rotor dynamics, materials strength and behavior and passive magnetic bearings. Several theoretical tools were developed in order to predict the behavior of the system during operation and to estimate the internal stresses induced by the rotation. These tools were theoretically validated using reference cases presented in the literature and experimentally with the help of an actual storage system developed for this research. This system was also used to validate several rotor dynamics theoretical concepts that are rarely discussed in the literature, namely the influence of the imperfections in the passive magnetic bearings on the behavior of the system. To achieve this study, radial passive magnetic bearings were developed, fabricated and characterized using a novel technique. It has been demonstrated that it is possible to use the main flaw of this type of bearing, its instability, to reduce the mechanical losses induced by the mechanical thrust bearing. Finally, the first steps of the development of a new heavy composite that uses steel wires as reinforcement are presented. Keywords: Passive magnetic bearing; Rotor dynamics; Heavy composite; Steel reinforced plastics; Experimental validation; Permanent magnet synchronous motor; Flywheel energy storage.
5

Dimensionnement et pertes dans un centreur magnétique guidant un volant d'inertie soumis à un balourd : application au stockage d'énergie de longue durée

Bakay, Loïcq Serge 18 April 2018 (has links)
Ces dernières années, les paliers magnétiques sont de plus en plus exploités dans des applications diverses. Ils sont généralement utilisés dans des applications à très haute vitesse de rotation, dans lesquelles la minimisation des pertes est requise pour éviter la pollution d’un environnement sensible à la poussière ou à un lubrifiant pour supprimer les vibrations et pour limiter la maintenance. Cette thèse présente l’étude de deux configurations de centreurs magnétiques  centreurs magnétiques actifs et hybrides polarisés utilisés dans un système de stockage d’énergie de longue durée par volant d’inertie. Dans plusieurs applications utilisant les centreurs magnétiques, les pertes magnétiques sont généralement négligées. Dans une application de stockage d’énergie de longue durée, toute source de pertes doit être prise en compte lors du dimensionnement de ces derniers. Nous avons proposé une méthode de calcul de pertes dans les deux configurations de centreurs supportant un volant d’inertie soumis à une force radiale de balourd. Après comparaison il en est ressorti que le centreur magnétique hybride polarisé présente moins de pertes Joule que le centreur magnétique actif, tandis que les pertes magnétiques du centreur magnétique actif sont inférieures à celles des centreurs hybrides polarisés. Le temps de décharge du volant supporté par les centreurs actifs est très inférieur à celui du volant supporté par les centreurs hybrides polarisés. Pour une application de stockage de longue durée, l’utilisation des centreurs magnétiques polarisés selon notre étude semble la plus appropriée. De même, notre étude a montré que le stockage d’énergie par volant d’inertie favorise les hautes vitesses de rotation, et ce quelle que soit la configuration de centreur utilisée. En d’autres termes, le temps de décharge du volant augmente avec la vitesse maximale d’opération du volant. / Nowadays, magnetic bearings are increasingly used in diverse applications. They are generally used in high speed rotating systems where low losses are requested, to avoid dust or lubricant in sensitive environments, for vibration elimination and to limit maintenance. This thesis presents the study of two magnetic bearings configurations  radial active magnetic bearings and hybrid radial magnetic bearings used in a long term flywheel energy storage system. In several applications involving magnetic bearings, iron losses are usually neglected. In a long term energy storage application every single loss has to take into account when designing the latters. We have proposed a loss calculation method of two magnetic bearings configurations supporting a flywheel submitted to an unbalance radial force. After some comparisons it emerges that hybride radial magnetic bearings present lower copper losses than active radial magnetic bearings, while iron losses are lower in active magnetic bearings than in hybride magnetic bearings. The flywheel discharge time supported by radial active magnetic bearings is much lower than the one supported by hybrid radial magnetic bearings. According to our study, utilization of hybrid radial magnetic bearings in long term energy storage seems to be more appropriated. Likewise, our study has shown that no matter the configuration of magnetic bearing used, flywheel energy storage promote the high rotating speeds. In other words the discharge time increases with the flywheel’s maximum operating speed.
6

Techno-economics of variable-speed pumped hydro energy storage

Mercier, Thomas 30 May 2024 (has links)
« Thèse en cotutelle, Université Laval et Université catholique de Louvain » / Dans le cadre de la transformation des systèmes électriques induite par le passage en cours aux énergies renouvelables, il est crucial de trouver des moyens efficaces pour équilibrer l'offre et la demande d'électricité. Le stockage d'énergie joue un rôle clé pour relever ce défi et, parmi les technologies établies, le stockage d'énergie par pompage-turbinage se distingue comme étant le plus mature et le plus répandu. Cependant, il existe encore un potentiel inexploité et une marge d'amélioration significative dans ce domaine, grâce à l'exploration de nouveaux sites et à l'adoption de technologies innovantes qui améliorent encore la flexibilité de ce type de stockage. Dans ce contexte, cette thèse de doctorat examine les aspects technico-économiques du pompage-turbinage, en se concentrant sur des systèmes à plus petite échelle, pouvant fonctionner à vitesse de rotation variable. En examinant les aspects économiques et les considérations technologiques de ces systèmes, la présente recherche apporte un éclairage précieux sur les solutions de stockage de l'énergie dans le paysage dynamique de la transition énergétique. Tout d'abord, la valeur historique du stockage d'électricité est évaluée sur les marchés de l'énergie dans les pays de l'UE-28, la Norvège, la Suisse et la Turquie. Des analyses de sensibilité sont effectuées, mettant en avant l'impact du rendement de cycle et de la capacité de stockage. Les résultats révèlent des variations significatives de la valeur d'arbitrage du stockage, à la fois géographiquement et temporellement, le rendement de cycle ayant un impact majeur sur la valeur d'arbitrage et la capacité de stockage ayant une valeur marginale très faible au-delà de 4 à 6 heures. En outre, l'impact des frais de réseau variables sur la valeur d'arbitrage est étudié, dans le cas spécifique de la Belgique. Les résultats de valorisation montrent que les frais de réseau peuvent diminuer la valeur d'arbitrage du stockage de 20% à 50% et qu'ils peuvent également réduire considérablement la participation du stockage dans les marchés de l'énergie. Deuxièmement, les systèmes de pompage-turbinage sont présentés, ainsi que les phénomènes de cavitation qui se produisent dans la machine hydraulique mise en œuvre dans ces systèmes. Cette spécificité des systèmes de pompage-turbinage joue un rôle crucial dans la définition des plages de fonctionnement limitées associées à cette technologie, tout en expliquant les avantages d'un fonctionnement à vitesse de rotation variable. Alors que les systèmes de pompage-turbinage sont historiquement opérés à vitesse de rotation fixe, les progrès récents en électronique de puissance ont ouvert la voie à un fonctionnement à vitesse variable. Aussi bien dans les nouvelles installations que dans les projets de mise à niveau de centrales de pompage-trubinage existantes, il est désormais envisagé de faire fonctionner une ou plusieurs unités à vitesse variable. Le lecteur est guidé dans les aspects techniques de la technologie à vitesse variable et ses avantages sont expliqués et illustrés dans le cas de trois topologies, l'une d'entre elles étant un système innovant de petite unité de pompage-turbinage. Troisièmement, les possibilités de contrôle de la puissance offertes par la vitesse variable sont étudiées dans le cas d'un système reposant classiquement sur une pompe-turbine réversible de type Francis, ainsi que dans le cas innovant susmentionné. La modélisation et la simulation des effets hydro-électromécaniques transitoires dans les systèmes de pompage-turbinage sont effectuées et illustrent la dynamique électrique élevée réalisable grâce à la vitesse variable. Le cas innovant de la petite unité de pompage-turbinage est poussé plus loin avec une analyse de stabilité, révélant les limites associées à une stratégie de contrôle de puissance trop exigeante. / In the midst of the ongoing transformation in power systems driven by the shift to renewable energy, finding effective ways to balance electricity supply and demand is crucial. Energy storage plays a pivotal role in addressing this challenge, and among the established technologies, pumped hydro energy storage (PHES) stands out as the most mature and widespread. There is however still significant untapped potential and room for improvement in PHES, by exploring new sites and adopting innovative technologies further improving the flexibility of this storage type. Within the the above-mentioned context, this Ph.D. thesis delves into the techno-economic aspects of PHES, with a specific focus on smaller systems that can operate at variable rotational speed. By examining the economic considerations and technological intricacies of these systems, the present research contributes valuable insights to the ongoing discourse on energy storage solutions in the dynamic landscape of the energy transition. First, the historical value of electricity storage is assessed on energy markets across the EU-28 countries, Norway, Switzerland, and Turkey. Sensitivity analyses are carried out with respect to the round-trip efficiency and storage duration. The results reveal significant variations in storage value from arbitrage, both geographically and temporally, with round-trip efficiency having a major impact on arbitrage value and storage duration having very low marginal value beyond 4 to 6 hours. Additionally, the impact of variable grid fees on arbitrage value is investigated, in the specific case of Belgium. The valuation results show that grid fees can decrease storage arbitrage value by 20% to 50%, and that they can also dramatically decrease storage participation in energy markets. Second, PHES systems are introduced together with the cavitation phenomena arising in the hydraulic machine involved in those systems. This specificity of PHES plays a crucial role in shaping the limited operating ranges associated with this technology, while it also explains the benefits of operating at variable rotational speed. While PHES systems have historically been operated at fixed rotational speed, recent advancements in power electronics have opened the door to variable-speed operation. In both new installations and the repowering of existing PHES projects, there is now consideration given to operating one or more units at variable speed. The reader is guided into the technicalities of the variable-speed technology and its benefits are explained and illustrated in the case of three topologies, one of them being an innovative system for small-scale PHES. Third, the power control possibilities brought by the variable speed are investigated in the case of a system classically relying on a reversible Francis pump-turbine, as well as in the aforementioned innovative case. Modelling and simulations of hydro-electromechanical transients in PHES systems are performed, and illustrate the high electrical dynamics achievable through the variable-speed technology. The innovative small-scale PHES system is pushed one step further with a stability analysis, revealing the limitations associated with a too demanding power control strategy.
7

A flexible polypyrrole membrane with improved electrical and electrochemical properties and its application in energy storage devices

Roohi, Zahra 07 June 2024 (has links)
No description available.

Page generated in 0.0751 seconds