Spelling suggestions: "subject:"étatsunis -- bonditions économique"" "subject:"étatsunis -- 12onditions économique""
1 |
Amélioration des mesures de performance conditionnelles des fonds mutuels américainsMorel, Nandrasana Pascal 10 February 2024 (has links)
Cette étude s’intéresse à une amélioration des mesures de performance conditionnelles de Ferson et Schadt (1996) et Christopherson, Ferson et Glassman (1998), et poursuit deux objectifs principaux. Le premier objectif est de tester comparativement la significativité des alphas et des coefficients de timing obtenus en conditionnant avec des variables économiques traditionnelles, d’une part, et des variables prévisionnelles améliorées, d’une autre part. Nous utilisons pour ces dernières des prévisions combinées qui agrègent quinze prévisions individuelles hors échantillon de variables économiques. Le deuxième objectif est d’effectuer une analyse des spécifications proposées pour voir si les estimations de l'alpha sont plus élevées en périodes de récession qu’en périodes d'expansion. À cet effet, nous utilisons un échantillon composé de 1104 fonds mutuels américains d’actions sur la période allant de janvier 1987 à décembre 2016. En utilisant plusieurs variables de conditionnement, les résultats montrent qu’il n’y a pas beaucoup de fonds pour lesquels les écarts d’alphas et de coefficients de timing sont significatifs. La performance et le timing sont donc similaires indépendamment de l’utilisation de variables de conditionnement traditionnelles ou améliorées. Ces résultats suggèrent que le potentiel des prévisions combinées comme variables de conditionnement dans les mesures conditionnelles de performance est faible. Nos résultats mettent également en évidence une performance des fonds qui n’est pas statistiquement différente en expansion qu’en récession. Toutefois, le coefficient de timing diminue d’une manière économiquement importante en récession, suggérant que le timing est mieux en expansion. Même si nos résultats sont impactés par un biais de survivance et un nombre faible d’observations en récession, il faut conclure qu’ils ne valident pas nos deux hypothèses de recherche : celle sur la pertinence de l’approche combinatoire de Rapach, Strauss et Zhou (2010) pour l’obtention de variables de conditionnement améliorées, et celle sur la performance positive en récession et négative en expansion de Kacperczyk, Van Nieuwerburgh et Veldkamp (2014).
|
2 |
Essays on time series forecasting with neural-network or long-dependence autoregressive models and macroeconomic news effects on bond yieldsNongni Donfack, Morvan 13 December 2023 (has links)
Cette thèse, organisée en trois chapitres, porte sur la modélisation et la prévision des séries chronologiques économiques et financières. Les deux premiers chapitres proposent de nouveaux modèles économétriques pour l'analyse des données économiques et financières en relaxant certaines hypothèses irréalistes habituellement faites dans la littérature. Le chapitre 1 développe un nouveau modèle de volatilité appelé TVP[indice ANN]-GARCH. Ce modèle offre une dynamique riche pour modéliser les données financières en considérant une structure GARCH (Generalized autoregressive conditional heteroscedasticity) dans laquelle les paramètres varient dans le temps selon un réseau de neurones artificiels (ANN). L'utilisation des ANNs permet de résoudre le problème de l'évaluation de la vraisemblance (présent dans les modèles à paramètres variables dans le temps (TVP)) et permet également l'utilisation de variables explicatives supplémentaires. Le chapitre développe également un algorithme Monte Carlo séquentiel (SMC) original et efficace pour estimer le modèle. Une application empirique montre que le modèle se compare favorablement aux processus de volatilité populaires en termes de prévisions de court et de long terme. L'approche peut facilement être étendue à tout modèle à paramètres fixes. Le chapitre 2 développe trois polynômes de retard autorégressifs (AR) parcimonieux qui génèrent des fonctions d'autocorrélation à décroissance lente, comme on l'observe généralement dans les séries chronologiques financières et économiques. La dynamique des polynômes de retard est similaire à celle de deux processus très performants, à savoir le modèle MSM (Multifractal Markov-Switching) et le modèle FHMV (Factorial Hidden Markov Volatility). Ils sont très flexibles car ils peuvent être appliqués à de nombreux modèles populaires tels que les processus ARMA, GARCH et de volatilité stochastique. Une analyse empirique met en évidence l'utilité des polynômes de retard pour la prévision de la moyenne conditionnelle et de la volatilité. Ils devraient être considérés comme des modèles de prévision alternatifs pour les séries chronologiques économiques et financières. Le dernier chapitre s'appuie sur une approche de régression prédictive en deux étapes pour identifier l'impact des nouvelles macroéconomiques américaines sur les rendements obligataires de trois petites économies ouvertes (Canada, Royaume-Uni et Suède). Nos résultats suggèrent que les nouvelles macroéconomiques américaines sont significativement plus importantes pour expliquer la dynamique de la courbe des taux dans les petites économies ouvertes (PEO) que les nouvelles nationales elles-mêmes. Les nouvelles relatives à la politique monétaire américaine ne sont pas les seuls facteurs importants des variations des rendements obligataires des PEO, mais les nouvelles relatives au cycle économique jouent également un rôle significatif. / This thesis, organized in three chapters, focuses on modelling and forecasting economic and financial time series. The first two chapters propose new econometric models for analysing economic and financial data by relaxing unrealistic assumptions usually made in the literature. Chapter 1 develops a new volatility model named TVP[subscript ANN]-GARCH. The model offers rich dynamics to model financial data by allowing for a generalized autoregressive conditional heteroscedasticity (GARCH) structure in which parameters vary over time according to an artificial neural network (ANN). The use of ANNs for parameters dynamics is a valuable contribution as it helps to deal with the problem of likelihood evaluation (exhibited in time-varying parameters (TVP) models). It also allows for the use of additional explanatory variables. The chapter develops an original and efficient Sequential Monte Carlo sampler (SMC) to estimate the model. An empirical application shows that the model favourably compares to popular volatility processes in terms of out-of sample fit. The approach can easily be extended to any fixed-parameters model. Chapter 2 develops three parsimonious autoregressive (AR) lag polynomials that generate slowly decaying autocorrelation functions as generally observed financial and economic time series. The dynamics of the lag polynomials are similar to that of two well performing processes, namely the Markov-Switching Multifractal (MSM) and the Factorial Hidden Markov Volatility (FHMV) models. They are very flexible as they can be applied in many popular models such as ARMA, GARCH, and stochastic volatility processes. An empirical analysis highlights the usefulness of the lag polynomials for conditional mean and volatility forecasting. They could be considered as forecasting alternatives for economic and financial time series. The last chapter relies on a two steps predictive regression approach to identify the impact of US macroeconomic releases on three small open economies (Canada, United Kingdom, and Sweden) bond yields at high and low frequencies. Our findings suggest that US macro news are significantly more important in explaining yield curve dynamics in small open economies (SOEs) than domestic news itself. Not only US monetary policy news are important drivers of SOEs bond yield changes, but business cycle news also play a significant role.
|
3 |
Modèle factoriel dynamique contraint à régimes markoviens pour l'évaluation en temps réel du cycle économiqueVlavonou, Firmin 19 April 2018 (has links)
Cette thèse, composée de trois essais, identifie des modèles factoriels dynamiques de prévisions en temps réel du cycle économique. Il a pour objectif principal de proposer une structure de modèles d’analyse du cycle économique avec des données à hautes fréquences dans un contexte de révisions de donnée. Ceci est pertinent pour trois raisons. Premièrement, la prévision du cycle économique est une question centrale en macroéconométrie. Deuxièmement, les décideurs politiques bénéficieraient à avoir des informations à hautes fréquences et évaluées en temps réel sur les conditions économiques pour leur prise de décisions. Enfin, les décisions sont souvent prises en se basant sur les données sujettes à des révisions et l’incertitude relative de ces données doit être incorporée dans le processus d’élaboration de décision. Après un bref survol de la littérature sur le cycle économique et des modèles d’analyse des points tournants, nous proposons une structure rigoureuse d’estimation du Produit Intérieur Brut (PIB) mensuel réel des États-Unis. Le problème récurrent rencontré dans l’estimation de cette classe de modèles est que les estimations du PIB mensuel ne sont pas cohérentes avec celles trimestrielles et ces dernières à leur tour ne sont pas cohérentes avec les estimations annuelles. Notre approche résout ce genre de problème et facilite les interprétations intrapériodes. Dans le premier essai (chapitre 2), nous développons et estimons un modèle factoriel dynamique traitant le PIB mensuel comme une variable inobservable. Contrairement aux approches existantes, la moyenne trimestrielle de nos estimations mensuelles est exactement égale à l’estimation trimestrielle du «Bureau of Economic Analysis». Par contruction, nos estimations mensuelles ont l’avantage d’être à la fois en temps réel et facile à interpréter. Le second essai (chapitre 3) est une extension de la structure précédente en y ajoutant un modèle markovien de changements de régimes du cycle économique au modèle factoriel dynamique. Le modèle est maintenant un modèle avec trois niveaux à deux composantes inobservables. Nous portons une attention particulière à la sensibilité des indicateurs usuels du cycle économique aux points tournants. L’indice de production industrielle, les ventes manufacturières et de commerce transmettent plus rapidement à la composante commune (PIB mensuel) les chocs qu’ils subissent du cycle économique que l’emploi. Dans le dernier essai (chapitre 4), nous intégrons les révisions de données dans le modèle factoriel dynamique à régimes markoviens dans une perspective d’évaluer leurs effets sur le cycle économique. Il apparait que les révisions de données ont un impact significatif sur les comouvements entre les variables et les points tournants sans compromettre la nature asymétrique du cycle économique. Mots clés : Modèle Factoriel Dynamique (MFD), Haute fréquence, Temps réel, Régimes markoviens, Composantes inobservables, Révisions, Comouvement, Points tournants, Asymétrie, Cycle économique. / This thesis is composed of three essays on real-time forecasting dynamic factor models. The main objective is to provide frameworks for high-frequency business cycle analysis in the presence of data revisions. This is relevant for three reasons. First, business cycle forecasting is a central question in macroeconometrics. Secondly, policy-makers would benefit from having access to timely, high-frequency information about business conditions to inform their decisions. Finally, decisions must frequently be made based on data that are subject to revision, and this data uncertainty should be incorporated into the decision-making process. After a review of the empirical business cycle literature and of models of business cycle turning points, we propose a rigorous framework for estimating monthly real US Gross Domestic Product (GDP). A recurring problem in this class of models is that estimates for monthly GDP are generally not consistent with quarterly estimates in the same way that quarterly estimates are not consistent with annual data. Our approach solves this problem. In the first essay (chapter 2), we develop and estimate a dynamic factor model treating the monthly Gross Domestic Product (GDP) as an unobservable latent variable. In contrast with existing approaches, the quarterly averages of our monthly estimates are exactly equal to the Bureau of Economic Analysis quarterly estimates. By construction, our monthly estimates have the advantage of being both timely and easy to interpret. The second essay (chapter 3) extends this framework by adding a Markov-switching model of business cycle regimes to the dynamic factor model. The model is now one with three levels, two of which have latent dependent variables. We pay particular attention to the sensibility of the usual indicators at turning points. The industrial production index, manufacturing and trade sales transmit more information about business cycle shocks to the common component (monthly GDP) than does employment. Finally, we integrate data revisions into our Markov- switching dynamic factor model in order to evaluate the effects of the revisions process on monthly estimates. It appears that data revisions have a significant impact on the co-movement of variables and on turning points without compromising the asymmetric nature of the business cycle. Keywords : Dynamic Factor Model (DFM), High-frequency, Real-time, Markov-switching, unobservable components, Revisions, co-movement, Turning points, Asymmetric, Business cycle.
|
Page generated in 0.0898 seconds