• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • Tagged with
  • 42
  • 42
  • 42
  • 42
  • 42
  • 42
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mechanical properties of flax fibers and their composites

Sparnins, Edgars January 2009 (has links)
Flax fibers, along with a number of other natural fibers, are being considered as an environmentally friendlier alternative of synthetic fibers in fiber-reinforced polymer composites. A common feature of natural fibers is a much higher variability of mechanical properties. This necessitates study of the flax fiber strength distribution and efficient experimental methods for its determination. Elementary flax fibers of different gauge lengths are tested by single fiber tension in order to obtain the stress-strain response and strength and failure strain distributions. The applicability of single fiber fragmentation test for flax fiber failure strain and strength characterization is considered. It is shown that fiber fragmentation test can be used to determine the fiber length effect on mean fiber strength and limit strain. The effect of mechanical damage in the form of kink bands and of diameter variability on the strength of elementary flax fibers is considered. Stiffness and strength under uniaxial tension of flax fiber composites with thermoset and thermoplastic polymer matrices are studied. The applicability of rule of mixtures and orientational averaging based models, developed for short fiber composites, to flax reinforced polymers are evaluated. Both the quasi-static and time dependent mechanical properties of flax fiber/thermoplastic starch based composites are analyzed. The effect of temperature and relative humidity is investigated. It is found that microdamage accumulation in this type of composites is not significant. Results show that the composite elastic modulus and failure stress are linearly related to the maximum stress reached by the matrix in tensile tests. Simple material models are suggested to account for the observed nonlinear viscoelasticity and viscoplasticity. / Godkänd; 2009; 20091029 (edgspa); DISPUTATION Ämnesområde: Polymera konstruktionsmaterial/Polymeric Composite Materials Opponent: Docent Kristofer Gamstedt, Kungliga Tekniska Högskolan, Stockholm Ordförande: Docent Roberts Joffe, Luleå tekniska universitet Tid: Onsdag den 9 december 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
42

Micro-mechanical mechanisms for deformation in polymer-material structures

Strömbro, Jessica January 2008 (has links)
In this thesis, the focus has been on micro-mechanical mechanisms in polymer-based materials and structures. The first part of the thesis treats length-scale effects on polymer materials. Experiments have showed that the smaller the specimen, the stronger is the material. The length-scale effect was examined experimentally in two different polymers materials, polystyrene and epoxy. First micro-indentations to various depths were made on polystyrene. The experiments showed that length-scale effects in inelastic deformations exist in polystyrene. It was also possible to show a connection between the experimental findings and the molecular length. The second experimental study was performed on glass-sphere filled epoxy, where the damage development for tensile loading was investigated. It could be showed that the debond stresses increased with decreasing sphere diameter. The debonding grew along the interface and eventually these cracks kinked out into the matrix. It was found that the length to diameter ratio of the matrix cracks increased with increasing diameter. The experimental findings may be explained by a length-scale effect in the yield process which depends on the strain gradients. The second part of the thesis treats mechano-sorptive creep in paper, i.e. the acceleration of creep by moisture content changes. Paper can be seen as a polymer based composite that consists of a network of wood fibres, which in its turn are natural polymer composites. A simplified network model for mechano-sorptive creep has been developed. It is assumed that the anisotropic hygroexpansion of the fibres leads to large stresses at the fibre-fibre bonds when the moisture content changes. The resulting stress state will accelerate creep if the fibre material obeys a constitutive law that is non-linear in stress. Fibre kinks are included in order to capture experimental observations of larger mechano-sorptive creep effects in compression than in tension. Furthermore, moisture dependent material parameters and anisotropy are taken into account. Theoretical predictions based on the developed model are compared to experimental results for anisotropic paper both under tensile and compressive loading at varying moisture content. The important features in the experiments are captured by the model. Different kinds of drying conditions have also been examined. / QC 20100910

Page generated in 0.1105 seconds