• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle de champ de phase pour l'étude de l'ébulition.

Ruyer, Pierre 17 July 2006 (has links) (PDF)
Dans cette étude nous considérons l'ébullition en paroi sous les angles de la modélisation et de la simulation numérique. Dans un premier temps nous proposons une revue bibliographique au sujet du régime d'ébullition nucléée à fort ux de chaleur pariétal et analysons plus particulièrement la compréhension du phénomène de crise d'ébullition de type caléfaction. Nous en déduisons une motivation pour l'étude de la dynamique de croissance de bulle au moyen de la simulation numérique. L'essentiel du travail concerne alors le développement d'un modèle de type champ de phase pour l'étude des écoulements liquide-vapeur avec changement de phase. Nous proposons une fermeture thermodynamique quasi-compressible dont les propriétés sont adaptées aux simulations envisagées. Le système d'équations du mouvement qui s'en déduit constitue une régularisation thermodynamiquement cohérente de la description discontinue du système diphasique, ce qui est l'avantage des modèles à interfaces diffuses. Nous démontrons que la formulation retenue permet de définir l'épaisseur de la zone régularisée indépendamment de la description thermodynamique des phases, ce qui est intéressant numériquement. Nous établissons la relation cinétique et analysons ainsi la modélisation champ de phase des mécanismes dissipatifs. Finalement nous étudions la résolution numérique du modèle à l'aide de simulations de transition de phase en configuration simple et de dynamique de bulle en isotherme.
2

Étude expérimentale et modélisation de l’ébullition transitoire / Experimental study and modelling of transient boiling

Baudin, Nicolas 26 October 2015 (has links)
Suite à un défaut de contrôle de la réaction nucléaire, un accident d’insertion de réactivité (RIA) peut survenir dans une centrale. Un pic de puissance se produit alors dans certains crayons de combustible, suffisamment important pour entraîner l’ébullition en film du réfrigérant qui les entoure. Ceci provoque la chute du refroidissement des crayons et donc une rapide et importante augmentation de la température de la gaine qui les entoure. L’évaluation du risque de rupture de la gaine est un sujet d’étude de l’Institut de Radioprotection et de Sûreté Nucléaire. Ces échanges de chaleur transitoires ne sont toujours pas compris et modélisés. Pour comprendre ces phénomènes, une boucle expérimentale a été construite à l’Institut de Mécanique des Fluides de Toulouse. Du HFE7000 circule de bas en haut dans une section d’essais verticale de géométrie semi-annulaire. Le demi-cylindre intérieur est une feuille de métal chauffée par effet Joule. Sa température est mesurée par une caméra infrarouge, couplée avec une caméra rapide pour la visualisation de l’écoulement. La courbe d’ébullition entière est étudiée en régimes stationnaire et transitoire : convection, déclenchement de l’ébullition, ébullition nucléée, passage en film, ébullition en film et remouillage. Les régimes stationnaires sont bien modélisés par des corrélations de la littérature. Différents modèles sont proposés pour représenter les transferts de chaleur transitoires : l’évolution de la convection et de l’ébullition nucléée se font de manière auto similaire pendant un palier de puissance. Ce constat permet de modéliser des évolutions plus compliquées telles des rampes de température. Le modèle de Hsu instationnaire prédit bien le déclenchement de l’ébullition. Pour des créneaux de puissance, le passage en film se fait à une température constante et le flux critique augmente avec la puissance, tandis que pour des rampes de puissance la température augmente mais le flux critique diminue avec l’augmentation de la puissance. Quand la paroi est chauffée, les flux de chaleur en ébullition en film sont beaucoup plus importants qu’en stationnaire mais ce régime est encore mal compris. Le refroidissement en ébullition en film et le remouillage sont bien caractérisés par un modèle à deux fluides. / A failure in the control system of the power of a nuclear reactor can lead to a Reactivity Initiated Accident in a nuclear power plant. Then, a power peak occurs in some fuel rods, high enough to lead to the coolant film boiling. It leads to an important increase of the temperature of the rod. The possible risk of the clad’s failure is a matter of interest for the Institut de Radioprotection et de Sûreté Nucléaire. The transient boiling heat transfer is not yet understood and modelled. An experimental set-up has been built at the Institut de Mécanique des Fluides de Toulouse (IMFT). Subcooled HFE-7000 flows vertically upward in a semi annulus test section. The inner half cylinder simulates the clad and is made of a stainless steel foil, heated by Joule effect. Its temperature is measured by an infrared camera, coupled with a high speed camera for the visualization of the flow topology. The whole boiling curve is studied in steady state and transient regimes: convection, onset of boiling, nucleate boiling, criticial heat flux, film boiling and rewetting. The steady state heat transfers are well modelled by literature correlations. Models are suggested for the transient heat flux: the convection and nucleate boiling evolutions are self-similar during a power step. This observation allows to model more complex evolutions, as temperature ramps. The transient Hsu model well represents the onset of nucleate boiling. When the intensity of the power step increases, the film boiling begins at the same temperature but with an increasing heat flux. For power ramps, the critical heat flux decreases while the corresponding temperature increases with the heating rate. When the wall is heated, the film boiling heat transfer is higher than in steady state but it is not understood. A two-fluid model well simulates the cooling film boiling and the rewetting.
3

Etude expérimentale et modélisation du transfert de chaleur de l'ébullition transitoire

Scheiff, Valentin 13 December 2018 (has links) (PDF)
L’étude de l’ébullition transitoire est un enjeu important pour la sureté nucléaire. Un tel phénomène peut se produire lors d’un accident de type RIA (Reactivity Initiated Accident)dans un réacteur nucléaire où le pic de puissance au niveau d’un crayon de combustible peut déclencher une ébullition transitoire conduisant à une forte augmentation de la température de la gaine et à un risque de rupture. Plusieurs études en conditions réacteurs ont permis d’obtenir des courbes d’ébullition transitoires mais la modélisation qui en découle manque encore de fiabilité. Dans le cadre d’une collaboration avec l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN), une expérience modèle a été construite à l’Institut de Mécanique des Fluides de Toulouse (IMFT). Elle génère un écoulement de réfrigérant HFE7000 dans un canal de section semi-annulaire, simulant l’écoulement autour d’un crayon de combustible, dont la partie intérieure, composée d’une feuille de métal, est chauffée rapidement par effet Joule, simulant l’échauffement de la gaine du crayon. La thermographie infra-rouge permet de mesurer la température de la paroi externe du métal. L’application d’une peinture noire sur le métal augmente son émissivité mais aussi la résistance thermique de la paroi. La précision de la mesure de la température d’intérêt a été optimisée en fonction de l’épaisseur de peinture et une correction sur le bilan d’énergie prend en compte ce paramètre. Ces mesures sont couplées avec une caméra rapide qui permet de visualiser les régimes d’ébullition et d’obtenir des tailles de bulles à l’aide de la mise en place d’algorithmes de traitement d’image. On représente sur un diagramme flux-température les transferts thermiques lors des différents régimes en stationnaire et en transitoire. Chaque régime d’ébullition, en conditions stationnaire ou transitoire, est alors passé en revue : la convection, le déclenchement de l’ébullition, l’ébullition nucléée, la crise d’ébullition, l’ébullition en film et le remouillage. Les régimes stationnaires sont correctement modélisés par des corrélations usuelles. La convection transitoire est caractérisée sur toute la paroi et son évolution se rapproche de la solution quasistationnaire. Il est montré que les transferts thermiques lors du passage vers l’ébullition nucléée sont dépendants de la formation d’une importante poche de vapeur qui se propage sur la paroi. Une étude locale de cette propagation est alors nécessaire. Afin de simuler des transitoires de température durant l’ébullition nucléée, un système d’asservissement de type P.I.D. permet d’imposer des créneaux ou des rampes de températures (de 5 à 500 K.s 1 ). Les résultats en ébullition nucléée sont conformes avec ceux de la littérature, tant en conditions stationnaire que transitoire. L’expérience permet d’étudier le transfert de chaleur lorsqu’un film de vapeur se forme et isole la paroi. Ce régime d’ébullition en film, pendant la chauffe ou le refroidissement de la paroi peut ainsi être stabilisée pendant plusieurs secondes avec ce système. On caractérise ainsi les conditions de déclenchement de l’ébullition en film, la dynamique de sa propagation et les transferts une fois établi. Enfin, l’implémentation des caractéristiques physiques de notre expérience dans le code SCANAIR de l’IRSN, permet de commencer à calculer et comparer nos résultats expérimentaux avec les simulations numériques. Des calculs de conduction instationnaire sont notamment considérés en imposant la température mesurée pour analyser nos résultats lors du régime de convection et après le déclenchement de l’ébullition.
4

ÉBULLITION SUR SITE ISOLÉ : ÉTUDE EXPÉRIMENTALE DE LA DYNAMIQUE DE CROISSANCE D'UNE BULLE ET DES TRANSFERTS ASSOCIÉS.

Barthes, Magali 12 December 2005 (has links) (PDF)
Le phénomène d'ébullition, d'un point de vue énergétique, présente un réel enjeu dans de nombreux domaines. Ce mémoire, à caractère expérimental, traite du cas d'une bulle de vapeur unique générée sous un élément chauffant, ce qui permet de maîtriser la croissance jusqu'à des tailles importantes. Deux techniques, optique (traitement d'image) et thermique (fluxmètre, thermocouples), sont mises en œuvre simultanément. La première partie du mémoire traite des transferts de chaleur et de masse dans le cas d'un liquide (FC-72) dégazé. L'influence de différents paramètres significatifs (puissance de chauffe, niveau de sous refroidissement, inclinaison) sur le phénomène d'ébullition est étudiée grâce à une expérimentation systématique. La dynamique de la bulle, dans la configuration retenue, est analysée et conduit à une loi de croissance en tn, où l'exposant « n » est uniquement fonction des paramètres thermiques. Le flux lié au changement de phase est quantifié et ne contribue que faiblement à l'amélioration des échanges de chaleur en ébullition. Il existe une corrélation évidente entre les transferts de chaleur et la fréquence d'émission des bulles de vapeur. L'augmentation de cette dernière améliore les transferts. La seconde partie du mémoire traite des écoulements de liquide autour de la bulle de vapeur. Ceux-ci, d'origine thermocapillaire (convection Marangoni), n'apparaissent que dans le cas d'un fluide non dégazé et résultent de la présence de gaz incondensables dissous dans le FC-72. Les différents régimes d'écoulement (stationnaire et oscillatoire) sont mis en évidence et la courbe limite de transition entre ces deux régimes est définie. Les différents résultats obtenus ont permis de valider l'utilisation du fluxmètre thermique, outil de mesure original.
5

Etude expérimentale et modélisation du transfert de chaleur de l'ébullition transitoire / Experimental study of heat transfer during transient boiling

Scheiff, Valentin 13 December 2018 (has links)
L’étude de l’ébullition transitoire est un enjeu important pour la sureté nucléaire. Un tel phénomène peut se produire lors d’un accident de type RIA (Reactivity Initiated Accident)dans un réacteur nucléaire où le pic de puissance au niveau d’un crayon de combustible peut déclencher une ébullition transitoire conduisant à une forte augmentation de la température de la gaine et à un risque de rupture. Plusieurs études en conditions réacteurs ont permis d’obtenir des courbes d’ébullition transitoires mais la modélisation qui en découle manque encore de fiabilité. Dans le cadre d’une collaboration avec l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN), une expérience modèle a été construite à l’Institut de Mécanique des Fluides de Toulouse (IMFT). Elle génère un écoulement de réfrigérant HFE7000 dans un canal de section semi-annulaire, simulant l’écoulement autour d’un crayon de combustible, dont la partie intérieure, composée d’une feuille de métal, est chauffée rapidement par effet Joule, simulant l’échauffement de la gaine du crayon. La thermographie infra-rouge permet de mesurer la température de la paroi externe du métal. L’application d’une peinture noire sur le métal augmente son émissivité mais aussi la résistance thermique de la paroi. La précision de la mesure de la température d’intérêt a été optimisée en fonction de l’épaisseur de peinture et une correction sur le bilan d’énergie prend en compte ce paramètre. Ces mesures sont couplées avec une caméra rapide qui permet de visualiser les régimes d’ébullition et d’obtenir des tailles de bulles à l’aide de la mise en place d’algorithmes de traitement d’image. On représente sur un diagramme flux-température les transferts thermiques lors des différents régimes en stationnaire et en transitoire. Chaque régime d’ébullition, en conditions stationnaire ou transitoire, est alors passé en revue : la convection, le déclenchement de l’ébullition, l’ébullition nucléée, la crise d’ébullition, l’ébullition en film et le remouillage. Les régimes stationnaires sont correctement modélisés par des corrélations usuelles. La convection transitoire est caractérisée sur toute la paroi et son évolution se rapproche de la solution quasistationnaire. Il est montré que les transferts thermiques lors du passage vers l’ébullition nucléée sont dépendants de la formation d’une importante poche de vapeur qui se propage sur la paroi. Une étude locale de cette propagation est alors nécessaire. Afin de simuler des transitoires de température durant l’ébullition nucléée, un système d’asservissement de type P.I.D. permet d’imposer des créneaux ou des rampes de températures (de 5 à 500 K.s 1 ). Les résultats en ébullition nucléée sont conformes avec ceux de la littérature, tant en conditions stationnaire que transitoire. L’expérience permet d’étudier le transfert de chaleur lorsqu’un film de vapeur se forme et isole la paroi. Ce régime d’ébullition en film, pendant la chauffe ou le refroidissement de la paroi peut ainsi être stabilisée pendant plusieurs secondes avec ce système. On caractérise ainsi les conditions de déclenchement de l’ébullition en film, la dynamique de sa propagation et les transferts une fois établi. Enfin, l’implémentation des caractéristiques physiques de notre expérience dans le code SCANAIR de l’IRSN, permet de commencer à calculer et comparer nos résultats expérimentaux avec les simulations numériques. Des calculs de conduction instationnaire sont notamment considérés en imposant la température mesurée pour analyser nos résultats lors du régime de convection et après le déclenchement de l’ébullition. / The study of rapid transient boiling is an important issue in the nuclear safety. Such a phenomenon may occur in the case of a RIA (Reactivity Initiated Accident) in the core of a nuclear reactor powerplant, where a power excursion can trigger the formation of a vapour film around the fuel rod, leading to an important rise of the rod temperature and a risk of failure. Some studies in reactor conditions provided transient boiling curves but the modeling lacks of reliability. In collaboration with the IRSN (Institut de Radioprotection et de Sûreté Nucléaire), an experiment model was built at the Institute of Fluid Mechanics of Toulouse. It generates the flow of a refrigerant, HFE7000, in a semi-annular section channel, whose inner wall is made of a metal foil rapidly heated by Joule effect, simulating the heating of a fuel rod. Infrared thermography is used to measure the temperature of the metal foil, painted with a black paint to increase its emissivity, causing also an increase of the wall thermal resistance. The measurement accuracy of the interest temperature has been optimized according to the paint thickness and a correction on the energy balance takes account this parameter. These measurements are coupled with a high-speed camera that allows visualizing the boiling regimes and get bubble sizes using image processing algorithms. On a flux-temperature diagram, the heat transfers are represented both for steady and transient regimes. Each boiling regime is then reviewed : convection, onset of nucleate boiling, nucleate boiling, boiling crisis, film boiling and rewetting. Steady regimes are correctly modeled by usual correlations. Transient convection is characterized over the whole wall and its evolution is closed to the quasi-steady solution. It is shown that heat transfer during the transition to nucleate boiling are strongly related to the formation of a large vapor phase that spreads on the wall. A local study of this propagation is then necessary. In order to simulate and control transient temperature during nucleate boiling, a P.I.D. is implemented to impose a steady or ramps temperature (from 5 to 500 K.s 1 ). The results in nucleate boiling make it possible to recover the results of the literature in both steady and transient conditions. The experiment allows to study the heat transfer when a vapor film is formed and insulates the wall. The film boiling regime during heating or the cooling of the wall can thus be stabilized for several seconds with this system. The conditions for triggering of film boiling are thus characterized, as its spread dynamic and its transfers once established. Finally, the implementation of the physical characteristics of our experience in IRSN’s SCANAIR code allows us to begin to calculate and compare our experimental results with numerical simulations. Unsteady conduction calculations are applied to the measured temperature to analyze our results during the convection regime and after the onset of boiling.

Page generated in 0.0696 seconds